THESE
Présentée pour l’obtention du diplôme de :
Magister

Thème
L 'Intégrale produit en statistiques

Par :
Malki Mouna

Directeur de la thèse :
Messaci F.

Soutenue le : 2009
Table des matières

1 L’intégrale produit dans le cas scalaire 7
 1.1 Introduction .. 7
 1.2 Définitions .. 8
 1.2.1 Fonction additive d’intervalles 8
 1.2.2 Fonction multiplicative d’intervalles 8
 1.2.3 La somme et le produit de Riemann 8
 1.2.4 L’intégrale produit 9
 1.3 Propriétés .. 10

2 L’intégrale produit dans le cas matriciel 23
 2.1 Définitions .. 23
 2.1.1 Norme de matrice 23
 2.1.2 Fonction à variation bornée 24
 2.1.3 Domination 24
 2.2 Résultats ... 25
 2.3 Autres définitions de l’intégrale produit 35
 2.3.1 Limite produit 35
3 Différentiabilité de l’intégrale produit

3.1 Rappel sur la différentiabilité au sens d’Hadamard

3.1.1 Définition (vecteur dirigé)

3.1.2 Définition (variation d’Hadamard)

3.1.3 Différentiabilité au sens d’Hadamard

3.1.4 Différentiabilité tangentelement

3.1.5 Règle de la chaine

3.2 Continuité et différentiabilité de l’intégrale produit

3.2.1 Outils préliminaires

3.2.2 Continuité

3.2.3 Différentiabilité de l’intégrale produit

4 Quelques applications en statistique

4.1 Introduction

4.2 Outils de base

4.2.1 Fonction de survie et mesure de hasard

4.2.2 Méthode Delta

4.2.3 Théorème de Glivenko–Cantelli

4.3 Estimateur de Kaplan Meier

4.4 Estimation des probabilités de transition d’un processus de Markov
4.5 Estimation de la fonction de répartition pour des données censurée à gauche .. 73

4.6 Simulation ... 77
Introduction

Lintégrale produit a été introduite par le mathématicien italien Vito Volterra en 1887 comme solution d’une certaine équation intégrale de base

En fait l’intégrale produit n’est que le passage du produit fini au produit infini, tout comme l’intégrale (additive) est le passage de la somme finie à la somme infinie.

La raison est que la fonction de survie (complément à 1 de la fonction de répartition) n’est que l’intégrale produit de la mesure de hasard et que les probabilités de transition d’un processus de Markov s’obtiennent comme l’intégrale produit de la mesure d’intensité de ce processus.

Dans ce mémoire nous commençons par introduire l’intégrale produit dans le cas scalaire (chapitre 1), qui est plus simple et permet de préparer le cas matriciel (chapitre 2) par utilisation du principe de domination. Nous y montrons en particulier l’équivalence entre différentes définitions (produit limite, équation de Volterra et séries de Péano).

Ensuite nous exploitons cet outil (intégrale produit) en statistique, pour montrer des propriétés d’estimateurs en se basant sur sa différentiabilité au sens d’Hadamard.
Nous consacrons le chapitre 3 à montrer cette propriété, après avoir donné un aperçu sur cette différentiabilité qui est une notion intermédiaire entre la différentiabilité au sens de Fréchet et celle au sens de gâteaux.

Enfin au chapitre 4, nous indiquons des références proposant des applications et nous détaillons deux exemples classiques dont nous nous inspirons pour proposer une troisième application.
Chapitre 1

L’intégrale produit dans le cas scalaire

1.1 Introduction

L’intégrale produit a été introduite par Volterra 1887 comme solution d’une certaine équation intégrale de base. Cette notion est la généralisation du produit fini au cas continu tout comme l’intégrale est la généralisation de la somme finie au cas continu.

Dans ce chapitre on va étudier l’intégrale produit dans le cas scalaire afin de préparer l’étude dans le cas matriciel.

Soit $\zeta = \{t_i, \ i = 0, \ldots, n\}$ une partition de l’intervalle $D = [s, t]$ d’où $s = t_0 < t_1 < \ldots < t_n = t$.

Définissons $D_i = [t_{i-1}, t_i], i = 1, \ldots, n$ et $|\zeta| = \max_{1 \leq i \leq n} (t_i - t_{i-1})$.

Soit α une application à valeurs dans l’ensemble des matrices carrées dont les éléments
\(\alpha_{ij} \) sont des mesures réelles et finies, définies sur la tribu des boréliens de l'intervalle
\([0, \tau]\) et soit \(\mu \) une matrice de fonctions sur \([0, \tau]\), \(I \) la matrice d'identité et \(0 \) la
matrice formée de zéros.

1.2 Définitions

1.2.1 Fonction additive d'intervalles

La fonction additive d'intervalles \(\alpha(s, t), 0 \leq s \leq t < \infty \), à valeurs dans l'ensemble
des matrices \(p \times p \) est la fonction qui possède les propriétés suivantes :

\[
- \alpha(s, t) = \alpha(s, u) + \alpha(u, t), \text{ pour tout } u \text{ tel que } s \leq u \leq t,
- \alpha(s, s) = 0, \text{ pour tout } s,
- \alpha(s, t) \rightarrow 0, \text{ pour tout } s.
\]

1.2.2 Fonction multiplicative d'intervalles

La fonction multiplicative d'intervalles \(\mu(s, t), 0 \leq s \leq t < \infty \), à valeurs dans
l'ensemble des matrices \(p \times p \) est la fonction qui possède les propriétés suivantes :

\[
- \mu(s, t) = \mu(s, u) \times \mu(u, t), \text{ pour tout } u \text{ tel que } s \leq u \leq t,
- \mu(s, s) = I, \text{ pour tout } s,
- \mu(s, t) \rightarrow I, \text{ pour tout } s.
\]

1.2.3 La somme et le produit de Riemann

La somme de Riemann est donnée par :
\[\sum_\zeta \Delta (\mu - I) = \sum_{1 \leq i \leq n} (\mu(D_i) - I). \] (1.1)

Le produit de Riemann est donné par :

\[\prod_\zeta (I + \Delta \alpha) = \prod_{1 \leq i \leq n} (I + \alpha(D_i)). \] (1.2)

On va étudier la limite de ces quantités lorsque \(|\zeta| \to 0|\).

1.2.4 L’intégrale produit

On prend \(p = 1 \). Soit \(\alpha_0(s,t) \) une fonction additive d’intervalle non négative , et \(\mu_0(s,t) \) une fonction multiplicative d’intervalle supérieure ou égale à 1.

Nous définissons l’intégrale produit de \(\alpha_0 \) par :

\[\pi_{|s,t|} (1 + d\alpha_0) = \sup_\zeta \prod_\zeta (1 + \Delta \alpha_0), \] (1.3)

et l’intégrale additive de \(\mu_0 \) par :

\[\int_{|s,t|} d(\mu_0 - 1) = \inf_\zeta \sum_\zeta \Delta (\mu_0 - 1). \] (1.4)

Où \(\zeta \) est une partition arbitraire de \(|s,t|\).

Nous allons énoncer quelques identités algébriques simples, dont nous avons besoin.
1.3 Propriétés

Lemme 1 Soit A_{1}, \ldots, A_{n} et B_{1}, \ldots, B_{n} des matrices $p \times p$, alors

1) $\prod_{1 \leq i \leq n} (I + A_{i}) - I = \sum_{1 \leq i \leq n} (I + A_{i}) \ldots (I + A_{i-1}) A_{i}$.
C’est la version discrète de l’équation de Kolmogorov "forward".

2) $\prod_{1 \leq i \leq n} (I + A_{i}) - I = \sum_{1 \leq i \leq n} A_{i} (I + A_{i+1}) \ldots (I + A_{n})$.
C’est la version discrète de l’équation de Kolmogorov "backward".

3) $\prod_{1 \leq i \leq n} (I + A_{i}) - I - \sum_{1 \leq i \leq n} A_{i} = \sum_{1 \leq i < j \leq n} A_{i} (I + A_{i+1}) \ldots (I + A_{j-1}) A_{j}$.

4) $\prod_{1 \leq i \leq n} (I + A_{i}) - \prod_{1 \leq i \leq n} (I + B_{i}) = \sum_{1 \leq i \leq n} (I + A_{1}) \ldots (I + A_{i-1}) (A_{i} - B_{i}) (I + B_{i+1}) \ldots (I + B_{n})$.
C’est la version discrète de l’équation de Duhamel.

Preuve. Les relations 1), 2) et 4) sont faciles à obtenir. Pour démontrer 3) remarquons que d’après la relation 1) on a :

$$\prod_{1 \leq i \leq n} (I + A_{i}) - I = \sum_{1 \leq j \leq n} \prod_{1 \leq i < j} (I + A_{i}) A_{j},$$ \hspace{1cm} (1.5)

et de la relation 2) on déduit

$$\prod_{1 \leq i < j} (I + A_{i}) = \sum_{1 \leq i < j < n} A_{i} (I + A_{i+1}) \ldots (I + A_{j-1}) + I.$$

Insérant cette équation dans l’équation (1.5), il vient :

$$\prod_{1 \leq i \leq n} (I + A_{i}) - I = \sum_{1 \leq j \leq n} \left[\sum_{1 \leq i < j} A_{i} (I + A_{i+1}) \ldots (I + A_{j-1}) + I \right] A_{j}.$$

Alors
\[
\prod_{1 \leq i \leq n} (I + A_i) - I - \sum_{1 \leq i \leq n} A_i = \sum_{1 \leq i < j \leq n} A_i (I + A_{i+1}) \cdots (I + A_{j-1}) A_j.
\]

Dans notre travail nous allons utiliser les inégalités suivantes

1) \[1 + a + b \leq (1 + a)(1 + b) \leq \exp(a + b); \quad a \geq 0, b \geq 0,\]
2) \[0 \leq \log(ab) \leq a - 1 + b - 1 \leq ab - 1, \quad a \geq 1, b \geq 1,\]
3) \[\exp(x) - \sum_{0 \leq k \leq n-1} \frac{x^k}{k!} \leq \exp(x) \frac{x^n}{n!}, \quad x \geq 0\]
4) \[-\frac{1}{2} (x - 1)^2 \leq \log x - x + 1 \quad x > 1.\]

Preuve. Faisons la démonstration de (3)

Remarquons tout d’abord que, pour tout \(x = 0\), l’inégalité est vérifiée.

Pour \(x > 0\), considérons la fonction \(f : t \rightarrow \exp t\), on a pour tout \(k \in \mathbb{N}\)
\[f^{(k)}(t) = \exp t; \quad d'où \quad f^{(k)}(0) = 1 \quad \text{et, pour tout} \quad t \in]0, x[: \quad |f^{(n+1)}(t)| \leq \exp x\]
(puisqu’on a \(0 \leq 1 \leq \exp t \leq \exp x\)).

En écrivant l’inégalité de Taylor-Lagrange à l’ordre \(n - 1\) sur \([0, x]\), on obtient,

pour tout \(n \in \mathbb{N}\):

\[
\exp(x) - \sum_{0 \leq k \leq n-1} \frac{x^k}{k!} \leq \exp(x) \frac{x^n}{n!}.
\]

La proposition suivante donne une autre caractérisation de l’intégrale produit et

de l’intégrale additive.

Proposition 2 a- Si \(\alpha_0\) est une fonction additive d’intervalle non négative, alors
La fonction \((s, t) \mapsto \pi_{|s, t|} (1 + d\alpha_0)\) est une fonction multiplicative bornée par
\(1 + \alpha_0\) et \(\exp(\alpha_0)\).

b- Si \(\mu_0\) est une fonction multiplicative d’intervalle supérieure ou égale à 1, alors
La fonction \((s, t) \mapsto \int_{|s,t|} d(\mu_0 - 1)\) est une fonction additive bornée par \(\log(\mu_0)\)
et \(\mu_0 - 1\).

En outre

\[
\lim \prod_{\zeta} (1 + \Delta \alpha_0) = \sup \prod_{\zeta} (1 + \Delta \alpha_0)
\]

\[
\pi_{|s, t|} (1 + d\alpha_0) = \lim \prod_{\zeta} (1 + \Delta \alpha_0)
\]

et

\[
\int_{|s,t|} d(\mu_0 - 1) = \lim \sum_{\zeta} \Delta (\mu_0 - 1),
\]

où les limites sont prises sur toutes les partitions raffinées de \(\zeta\).

Preuve. D’après les inégalités

\[
1 + a + b \leq (1 + a) (1 + b) \leq \exp(a + b); \quad a \geq 0, b \geq 0,
\]
on obtient

\[
1 + \sum_{1 \leq i \leq n} \alpha_0(D_i) \leq \prod_{1 \leq i \leq n} (1 + \alpha_0(D_i)) \leq \exp(\sum_{1 \leq i \leq n} \alpha_0(D_i)).
\]
On a $\prod_{\zeta} (1 + \Delta \alpha_0)$ croît sur toutes les partitions plus fines que ζ, et bornée supérieurement par $\exp (\alpha_0 ([s, t]))$, alors $\prod_{|s,t|} (1 + d \alpha_0)$ est aussi bornée supérieurement par $\exp (\alpha_0 ([s, t]))$.

donc

$$1 + \alpha_0 \leq \sup_{\zeta} \prod_{\zeta} (1 + \Delta \alpha_0) \leq \exp (\alpha_0).$$

Montrons (1.6), on a :

\forall \epsilon, \exists \zeta_\epsilon$ une partition plus fine que ζ tel que

$$\prod_{\zeta} (1 + \Delta \alpha_0) \leq \prod_{\zeta_\epsilon} (1 + \Delta \alpha_0),$$

d’un autre côté

$$\pi_{|s,t|} (1 + d \alpha_0) - \epsilon \leq \prod_{\zeta} (1 + \Delta \alpha_0),$$

alors

$$\pi_{|s,t|} (1 + d \alpha_0) - \epsilon \leq \prod_{\zeta_\epsilon} (1 + \Delta \alpha_0),$$

et puisque un raffinement de la subdivision ζ augmente $\prod_{\zeta} (1 + \Delta \alpha_0)$, donc la limite sur toutes les partitions $|s, t|$ coïncide avec le sup. Deux subdivisions ayant toujours une subdivision commune plus fine, la limite est unique.

Suivant les mêmes étapes et en utilisant les inégalités

$$0 \leq \log (ab) \leq a - 1 + b - 1 \leq ab - 1, \quad a \geq 1, \; b \geq 1,$$ \hspace{1cm} (1.8)
nous trouvons
\[
\log \prod_{1 \leq i \leq n} \mu_0(D_i) \leq \sum_{1 \leq i \leq n} (\mu_0(D_i) - 1) \leq \prod_{1 \leq i \leq n} \mu_0(D_i) - 1.
\]
\[
\sum_{\zeta} \Delta(\mu_0 - 1) \text{ décroît sur toutes les partitions les plus fines que } \zeta, \text{ alors}
\]
\[
\log \mu_0(s, t) \leq \inf_{\zeta} \sum_{\zeta} \Delta(\mu_0 - 1) \leq \mu_0(s, t) - 1.
\]
C’est à dire
\[
\log \mu_0 \leq \int_{[s,t]} d(\mu_0 - 1) \leq \mu_0 - 1.
\]
Démontrons (1.7)
\[
\forall \epsilon, \exists \zeta, \quad \int_{[s,t]} d(\mu_0 - 1) \leq \sum_{\zeta} \Delta(\mu_0 - 1) \leq \int_{[s,t]} d(\mu_0 - 1) + \epsilon.
\]
Donc
\[
\int_{[s,t]} d(\mu_0 - 1) = \lim_{\zeta} \sum_{\zeta} \Delta(\mu_0 - 1).
\]

Résultats

On déduit immédiatement que les intégrales produit et additive satisfont les inégalités suivantes (nous avons déjà obtenu (1.9) et (1.12) de la proposition 2).

\[
\alpha_0(s, t) + 1 \leq \pi, \quad (1 + d\alpha_0) \leq \exp(\alpha_0(s, t)),
\]

(1.9)
\[
\alpha_0 (s, t) \leq \pi (1 + d\alpha_0) - 1 \leq \alpha_0 (s, t) \exp (\alpha_0 (s, t)), \quad (1.10)
\]

\[
0 \leq \pi (1 + d\alpha_0) - 1 - \alpha_0 (s, t) \leq \frac{1}{2} (\alpha_0 (s, t))^2 \exp (\alpha_0 (s, t)), \quad (1.11)
\]

\[
\log \mu_0 (s; t) \leq \int d (\mu_0 - 1) \leq \mu_0 (s; t) - 1, \quad (1.12)
\]

\[
-\frac{1}{2} (\mu_0 (s; t) - 1)^2 \leq \int d (\mu_0 - 1) - \mu_0 (s; t) + 1 \leq 0. \quad (1.13)
\]

Preuve. Pour (1.10) et d’après (1.9)

\[
\alpha_0 (s, t) \leq \pi (1 + d\alpha_0) - 1 \leq \exp (\alpha_0 (s, t)) - 1,
\]

ou

\[
1 = \frac{(\alpha_0 (s, t))^0}{0!},
\]

donc d’après l’inégalité \(\exp (x) - \sum_{0 \leq k \leq n-1} \frac{x^k}{k!} \leq \exp (x) \frac{x^n}{n!} \), pour \(n = 1 \)

\[
\alpha_0 (s, t) \leq \pi (1 + d\alpha_0) - 1 \leq \alpha_0 (s, t) \exp (\alpha_0 (s, t)).
\]

Quant à la formule (1.11) on a :

\[
0 \leq \pi (1 + d\alpha_0) - 1 - \alpha_0 (s, t) \leq \exp (\alpha_0 (s, t)) - 1 - \alpha_0 (s, t).
\]

On applique l’inégalité \(\exp (x) - \sum_{0 \leq k \leq n-1} \frac{x^k}{k!} \leq \exp (x) \frac{x^n}{n!} \), pour \(n = 2 \), on trouve
0 \leq \frac{\pi}{[s,t]} (1 + d\alpha_0) - 1 - \alpha_0(s, t) \leq \frac{1}{2} (\alpha_0(s, t))^2 \exp(\alpha_0(s, t)).

Pour la fonction \(\mu_0 \) et d’après la proposition (2) et l’inégalité (1.12)

\[
\log \mu_0(s, t) - \mu_0(s, t) + 1 \leq \int_{[s,t]} d(\mu_0 - 1) - \mu_0(s, t) + 1 \leq 0,
\]

Par l’application de l’inégalité \(-\frac{1}{2} (x - 1)^2 \leq \log x - x + 1\) pour \(x > 1 \) on trouve

(1.13) \(\blacksquare \)

Proposition 3 Si

\[
\mu_0(s, t) = \frac{\pi}{[s,t]} (1 + d\alpha_0),
\]

alors

\[
\alpha_0(s, t) = \int_{[s,t]} d(\mu_0 - 1).
\]

Et vice versa. De plus, pour n’importe quelle partition, on a :

\[
0 \leq \sum_{\zeta} \Delta(\mu_0 - 1) - \alpha_0(s, t) \leq \mu_0(s, t) - \prod_{\zeta} (1 + \Delta\alpha_0) \tag{1.16}
\]

\[
\leq \mu_0(s, t) \left(\sum_{\zeta} \Delta(\mu_0 - 1) - \alpha_0(s, t) \right)
\]

Preuve. Soit \(\alpha_0 \) une fonction additive non négative, on a

\[
\mu_0(D_i) = \mu_0(t_{i-1}, t_i) = \frac{\pi}{[t_{i-1}, t_i]} (1 + d\alpha_0).
\]
La formule (1.10) entraîne

$$\alpha_0(t_{i-1}, t_i) \leq \pi_{[t_{i-1}, t_i]} (1 + d\alpha_0) - 1 = \mu_0(D_i) - 1.$$

α_0 étant additive, par sommation sur i on obtient

$$\alpha_0(s, t) = \sum_{1 \leq i \leq n} \alpha_0([t_{i-1}, t_i]) \leq \sum_{1 \leq i \leq n} (\mu_0(D_i) - 1) = \sum_{\zeta} \Delta(\mu_0 - 1),$$

$$0 \leq \sum_{\zeta} \Delta(\mu_0 - 1) - \alpha_0(s, t) = \sum_{1 \leq i \leq n} (\mu_0(D_i) - 1 - \alpha_0(D_i)).$$

En multipliant pour tout i, $i = 1, \ldots, n$, le terme $\mu_0(D_i) - 1 - \alpha_0(D_i)$ par

$$\mu_0(D_1) \ldots \mu_0(D_{i-1}) (1 + \alpha_0(D_{i+1})) \ldots (1 + \alpha_0(D_n)),$$

il vient de la formule 4) du lemme 1

$$\sum_{1 \leq i \leq n} (\mu_0(D_i) - 1 - \alpha_0(D_i))$$

$$\leq \sum_{1 \leq i \leq n} \mu_0(D_1) \ldots \mu_0(D_{i-1}) (\mu_0(D_i) - 1 - \alpha_0(D_i)) (1 + \alpha_0(D_{i+1})) \ldots (1 + \alpha_0(D_n))$$

$$= \prod_{1 \leq i \leq n} \mu_0(D_i) - \prod_{1 \leq i \leq n} (1 + \alpha_0(D_i)) = \mu_0(s, t) - \prod_{\zeta} (1 + \Delta\alpha_0).$$

Donc

$$0 \leq \sum_{\zeta} \Delta(\mu_0 - 1) - \alpha_0(s, t) \leq \mu_0(s, t) - \prod_{\zeta} (1 + \Delta\alpha_0).$$
Par passage à la limite sur les raffinements de la partition ζ, on trouve

\[0 \leq \int_{[s,t]} d(\mu_0 - 1) - \alpha_0(s,t) \leq 0. \]

L’inverse et la seconde inégalité de (1.16) sont prouvées de la même manière, en effet

\[\alpha_0(D_i) = \int_{[t_{i-1}, t_i]} d(\mu_0 - 1) \leq \mu_0(D_i) - 1. \]

alors pour tout \(i, i = 1, \ldots, n \), on obtient

\[1 + \alpha_0(D_i) \leq \mu_0(D_i) \quad \forall \ i = 1 \ldots n. \]

D’après la première inégalité de (1.9) et la formule 4) du lemme 1, on a :

\[
0 \leq \mu_0(s,t) - \prod_{\zeta} (1 + \Delta \alpha_0) = \prod_{1 \leq i \leq n} \mu_0(D_i) - \prod_{1 \leq i \leq n} (1 + \alpha_0(D_i)) \\
= \sum_{1 \leq i \leq n} (1 + \alpha_0(D_1)) \ldots (1 + \alpha_0(D_{i-1})) (\mu_0(D_i) - 1 - \alpha_0(D_i)) \mu_0(D_{i+1}) \ldots \mu_0(D_n) \\
\leq \sum_{1 \leq i \leq n} \mu_0(D_1) \ldots \mu_0(D_{i-1}) (\mu_0(D_i) - 1 - \alpha_0(D_i)) \mu_0(D_{i+1}) \ldots \mu_0(D_n) \\
= \mu_0(s,t) \left[\sum_{\zeta} \Delta (\mu_0 - 1) - \alpha_0(s,t) \right],
\]

alors

\[
0 \leq \mu_0(s,t) - \prod_{\zeta} (1 + \Delta \alpha_0) \leq \mu_0(s,t) \left[\sum_{\zeta} \Delta (\mu_0 - 1) - \alpha_0(s,t) \right].
\]
Par passage à la limite sur les raffinements de ζ, on trouve

$$\mu_0(s,t) = \pi_{[s,t]} (1 + d\alpha_0).$$

\[\Box\]

Lemme 4 Soit θ une mesure positive sur \mathbb{R}_+, finie sur les intervalles bornés et soit ζ une partition de $[s,t]$. Si s_i est l’atome de plus grande masse dans D_i, alors

$$\lim_{|I| \to 0} \max_{0 \leq i \leq n} \theta(D_i \setminus \{s_i\}) = 0,$$

uniformément en $s,t \leq u$ pour tout point u fixé, $u < \infty$.

Preuve. Soit b_1, b_2, \ldots les atomes de θ se trouvant dans l’intervalle $[0,u]$, de masses respectives a_1, a_2, \ldots, on a

$$\theta\{b_1, b_2, \ldots\} = \sum_{n \in \mathbb{N}} a_n \leq m([0,u]) < \infty \Rightarrow \forall \epsilon > 0, \exists \eta(\epsilon) > 0 / \sum_{n > \eta(\epsilon)} a_n \leq \frac{\epsilon}{2}.$$

Notons θ^c (respectivement θ^d) la partie continue (respectivement discrète) de θ, alors l’application $\nu \mapsto \theta^c([0,\nu])$ est uniformément continue sur le compact $[0,u]$, d’où

$$\exists \delta_1(\epsilon) > 0 / \forall I, I \text{ intervale} , l(I) < \delta_1(\epsilon) \implies \theta^c(I) \leq \frac{\epsilon}{2}$$

où $l(I)$ est la longueur de I.

Posons $\delta_2(\epsilon) = \min_{\substack{i \leq \eta(\epsilon) \\ j \leq \eta(\epsilon)}} |b_i - b_j|$, on a $\delta_2(\epsilon) > 0$.

Tout intervalle de longueur inférieure à $\delta_2(\epsilon)$ contient au plus un des atomes $b_1, \ldots, b_{\eta(\epsilon)}$.

Soit s_i l’atome de plus grande masse dans l’intervalle D_i, on a
\(\theta(D_i \setminus \{s_i\}) = \theta(D_i) - \theta(\{s_i\}) = \theta^c(D_i) + \theta^d(D_i) - \theta(\{s_i\}). \)

Si on choisit \(|\zeta| < \min(\delta_1, \delta_2) \), alors

\(\theta^c(D_i) < \frac{\epsilon}{2} \quad \text{et} \quad \theta^d(D_i) = \sum_{b_n \in D_i} a_n \leq \sum_{n > \eta(\epsilon)} a_n + a_{n_0} \quad \text{où} \quad n_0 \leq \eta(\epsilon). \)

Or \(a_{n_0} \leq \theta(\{s_i\}) \implies \theta^d(D_i) \leq \frac{\epsilon}{2} + \theta(\{s_i\}) \implies \theta(D_i \setminus \{s_i\}) \leq \epsilon. \)

Lemme 5 Soit \(\theta \) une fonction additive d'intervalles non négative, et soit \(D =]s, t[\); alors pour chaque \(u \in D \), on a

\(\pi_D(1 + d\theta) - 1 - \theta(D) \leq \theta(D \setminus \{u\}) \theta(D) \exp(\theta(D)). \)

Preuve. On a

\[
\pi_{D \setminus \{u\}} (1 + d\theta) = \pi_{]s, u[} (1 + d\theta) \pi_{]u, t[} (1 + d\theta).
\]

Alors d’après les formules (1.10) et (1.11), on a

\[
0 \leq \pi_D(1 + d\theta) - 1 - \theta(D)
= (1 + \theta(\{u\})) \pi_{D \setminus \{u\}} (1 + d\theta) - 1 - \theta(D \setminus \{u\}) - \theta(\{u\})
= \pi_{D \setminus \{u\}} (1 + d\theta) + \theta(\{u\}) \pi_{D \setminus \{u\}} (1 + d\theta) - 1 - \theta(D \setminus \{u\}) - \theta(\{u\})
\]
\[
\pi \frac{1}{\theta (D \setminus \{u\}) (1 + d\theta)} = (1 + \theta (D \setminus \{u\})) \theta (\{u\}) (1 + d\theta) - 1
\]

\[
\leq \frac{1}{2} \theta (D \setminus \{u\})^2 \exp[\theta (D \setminus \{u\})] + \theta (\{u\}) \theta (D \setminus \{u\}) \exp(\theta (D \setminus \{u\}))
\]

\[
\leq \theta (D \setminus \{u\}) \exp[\theta (D \setminus \{u\})] \theta (D \setminus \{u\}) + \theta (\{u\})
\]

\[
\leq \theta (D \setminus \{u\}) \theta (D) \exp (\theta (D))
\]

\[
\pi \frac{1}{\theta (D \setminus \{u\}) (1 + d\theta)} = \lim_{|\zeta| \to 0} \prod_{\zeta} (1 + \Delta \alpha_0)
\]

Proposition 6
\(a\)- Si \(\alpha_0\) est une fonction additive d’intervalles non négative alors

\[
\int_{|s,t|} d (\mu_0 - 1) = \lim_{|\zeta| \to 0} \sum_{\zeta} \Delta (\mu_0 - 1).
\]

Preuve. Soit \(M_i = \pi \frac{1}{D_i} (1 + d\alpha_0)\) et \(N_i = 1 + \alpha_0 (D_i)\) alors par (1.9) \(M_i\) et \(N_i\) sont bornées par \(\exp(\alpha_0 (D_i))\).

Le lemme 5 nous donne
\[| M_i - N_i | = \left| \pi_{D_i} (1 + d\alpha_0) - 1 - \alpha_0 (D_i) \right| \]
\[
\leq \alpha_0 (D_i \setminus \{s_i\}) \alpha_0 (D_i) \exp \alpha_0 (D_i) .
\]

D’autre part

\[
0 \leq \pi_{|s,t|} (1 + d\alpha_0) - \prod_{\zeta} (1 + \Delta \alpha_0) = \prod_{1 \leq i \leq n} \pi_{D_i} (1 + d\alpha_0) - \prod_{1 \leq i \leq n} (1 + \alpha_0 (D_i))
\]
\[
= \prod_{1 \leq i \leq n} M_i - \prod_{1 \leq i \leq n} N_i = \sum_{1 \leq i \leq n} M_1 M_2 \ldots M_{i-1} (M_i - N_i) N_{i+1} \ldots N_n
\]
\[
\leq \sum_{1 \leq i \leq n} \exp \alpha_0 (D_1) \ldots \exp \alpha_0 (D_{i-1}) \alpha_0 (D_i \setminus \{s_i\})
\]
\[
\alpha_0 (D_i) \exp \alpha_0 (D_i) \ldots \exp \alpha_0 (D_n)
\]
\[
= \exp \alpha_0 (D) \sum_{1 \leq i \leq n} \alpha_0 (D_i \setminus \{s_i\}) \alpha_0 (D_i)
\]
\[
\leq \exp \alpha_0 (D) \max_{1 \leq i \leq n} (\alpha_0 (D_i \setminus \{s_i\})) \sum_{1 \leq i \leq n} \alpha_0 (D_i)
\]
\[
= \alpha_0 (D) \exp \alpha_0 (D) \max_{1 \leq i \leq n} (\alpha_0 (D_i \setminus \{s_i\}))
\]

Par passage à la limite quand $|\zeta| \longrightarrow 0$ et par le lemme 4 on obtient

\[
\pi_{|s,t|} (1 + d\alpha_0) = \lim_{|\zeta| \longrightarrow 0} \prod_{\zeta} (1 + \Delta \alpha_0) .
\]

Pour l’équation (1.18) on utilise l’inégalité (1.16) .
Chapitre 2

L’intégrale produit dans le cas matriciel

Nous avons étudié dans le premier chapitre l’existence et les propriétés de l’intégrale produit dans le cas scalaire afin de faciliter l’étude générale dans le cas matriciel, que nous traitons dans ce chapitre, le concept de domination nous permettant de nous ramener au cas scalaire.

2.1 Définitions

2.1.1 Norme de matrice

Pour une matrice $A = (a_{ij})$ de dimension $p \times p$, on peut définir la norme matricielle comme suit.
\[|A| = \max_i \sum_j |a_{ij}|. \]

On note que

\[|AB| \leq |A| |B|, \ |A + B| \leq |A| + |B|. \]

2.1.2 Fonction à variation bornée

La fonction d'intervalles \(\beta \) à valeurs dans l'ensemble des matrices \(p \times p \) est à variation bornée sur \(]s,t[\) s'il existe une constante \(c \) telle que

\[|\beta|(s,t) = \sup_\zeta \sum_{1 \leq i \leq n} |\beta(D_i)| \leq c < \infty, \]

où \(\zeta = \{t_i\}_{1 \leq i \leq n} \) est une partition de \(]s,t[\) et \(D_i =]t_{i-1},t_i[\).

\(\beta \) est à variation bornée si \(|\beta|(0,t) < \infty \) pour tout \(t < \infty \).

2.1.3 Domination

La fonction \(\beta \) est dite dominée par une fonction réelle d'intervalle \(\beta_0 \) si pour tous \(s \) et \(t \), on a

\[|\beta(s,t)| \leq \beta_0(s,t). \]
2.2 Résultats

Lemme 7 1-Une fonction additive d’intervalle \(\alpha \) est à variation bornée si et seulement si elle est dominée par une fonction réelle additive d’intervalle non négative \(\alpha_0 \).

2-Une fonction multiplicative d’intervalle \(\mu \) est telle que \(\mu - I \) est à variation bornée si et seulement si il y a une fonction réelle multiplicative d’intervalle \(\mu_0 \) supérieure ou égale à 1, tel que \(\mu - I \) est dominée par \(\mu_0 - 1 \).

Preuve. Seules les conditions nécessaires sont à montrer.

1-Soit \(\alpha \) une fonction additive et à variation bornée. En posant

\[
\alpha_0 (s, t) = |\alpha| (s, t) = \sup_{\zeta} \sum_{1 \leq i \leq n} |\alpha(D_i)|,
\]

nous obtenons le résultat visé.

2-Si \(\mu \) est une fonction multiplicative alors la fonction

\[
(s, t) \longrightarrow |\mu - I| (s, t) = \sup_{\zeta} \sum_{1 \leq i \leq n} |\mu(D_i) - I|
\]

n’est pas additive, mais sur additive seulement d’après (1.8), c’est à dire

\[
|\mu - I| (s, t) \geq |\mu - I| (s, u) + |\mu - I| (u, t),
\]

et on peut définir

\[
\alpha_0 (u, t) = |\mu - I| (0, t) - |\mu - I| (0, u)
\]
et

$$\mu_0 (s, t) = \pi_{[s, t]} (1 + d\alpha_0)$$

alors, d’après (1.10), on a

$$|\mu (s, t) - I| \leq |\mu - I| (s, t) \leq \alpha_0 (s, t)$$

\[\square\]

Théorème 8

Soit α une fonction additive d'intervalles dominée par une fonction additive α_0.

Soit $\mu_0 = \pi_{[s, t]} (1 + d\alpha_0)$; alors μ définie par

$$\mu (s, t) = \pi_{[s, t]} (I + d\alpha) = \lim_{\zeta \rightarrow 0} \prod_{\zeta} (I + \Delta \alpha)$$

existe et cette limite est uniforme dans $0 \leq s \leq t \leq u$ pour u fixé et $u < \infty$.

La fonction μ est une fonction multiplicative d'intervalles, $\mu - I$ est dominée par $\mu_0 - 1$ et $\mu - I - \alpha$ est dominée par $\mu_0 - 1 - \alpha_0$.

Preuve. D'après la formule 3) du lemme 1, on a pour $D = [s, t]$

$$\prod_{\zeta} (I + \Delta \alpha) - I - \alpha (D) = \sum_{1 \leq i < j \leq n} \alpha (D_i) (I + \alpha (D_{i+1})) \ldots (I + \alpha (D_{j-1})) \alpha (D_j),$$

alors

$$\left| \prod_{\zeta} (I + \Delta \alpha) - I - \alpha (D) \right| = \left| \sum_{1 \leq i < j \leq n} \alpha (D_i) (I + \alpha (D_{i+1})) \ldots (I + \alpha (D_{j-1})) \alpha (D_j) \right|$$
\[\leq \sum_{1 \leq i < j \leq n} |\alpha(D_i)| |(I + \alpha(D_{i+1}))| \ldots |(I + \alpha(D_{j-1}))| |\alpha(D_j)| \]

\[\leq \sum_{1 \leq i < j \leq n} \alpha_0(D_i) (1 + \alpha_0(D_{i+1})) \ldots (1 + \alpha_0(D_{j-1})) \alpha_0(D_j). \]

Donc

\[\left| \prod_{\zeta} (I + \Delta \alpha) - I - \alpha(D) \right| \leq \prod_{\zeta} (1 + \Delta \alpha_0) - 1 - \alpha_0(D) \quad (2.1) \]

Soit \(\xi \) une partition plus fine que \(\zeta \) et \(\lambda_i \) la partition correspondante de \(D_i \); alors

\[\prod_{\xi} (I + \Delta \alpha) - \prod_{\zeta} (I + \Delta \alpha) = \prod_{1 \leq i \leq n} \prod_{\lambda_i} (I + \Delta \alpha) - \prod_{1 \leq i \leq n} (I + \alpha(D_i)). \]

De la formule 4) du lemme 1 et de la relation précédente, il vient

\[\left| \prod_{\xi} (I + \Delta \alpha) - \prod_{\zeta} (I + \Delta \alpha) \right| \]

\[= \sum_{1 \leq i \leq n} \prod_{\lambda_1} (I + \Delta \alpha) \ldots \prod_{\lambda_{i-1}} (I + \Delta \alpha) \left(\prod_{\lambda_i} (I + \Delta \alpha) - I - \alpha(D_i) \right) \]

\[\times (I + \alpha(D_{i+1})) \ldots (I + \alpha(D_n)) \]

\[\leq \sum_{1 \leq i \leq n} \left| \prod_{\lambda_1} (I + \Delta \alpha) \ldots \prod_{\lambda_{i-1}} (I + \Delta \alpha) \right| \left| \prod_{\lambda_i} (I + \Delta \alpha) - I - \alpha(D_i) \right| \]

\[\times |(I + \alpha(D_{i+1}))| \ldots |(I + \alpha(D_n))| \]

\[\leq \sum_{1 \leq i \leq n} \prod_{\lambda_1} (I + \Delta \alpha_0) \ldots \prod_{\lambda_{i-1}} (1 + \Delta \alpha_0) \left(\prod_{\lambda_i} (1 + \Delta \alpha_0) - 1 - \alpha_0(D_i) \right) \]

\[\times (1 + \alpha_0(D_{i+1})) \ldots (1 + \alpha_0(D_n)) \]
\[= \prod_{\xi} (1 + \Delta \alpha_0) - \prod_{\zeta} (1 + \Delta \alpha_0) \]

alors

\[\left| \prod_{\xi} (I + \Delta \alpha) - \prod_{\zeta} (I + \Delta \alpha) \right| \leq \prod_{\xi} (1 + \Delta \alpha_0) - \prod_{\zeta} (1 + \Delta \alpha_0) \quad (2.2) \]

D’après le chapitre 1, l’intégrale produit \(\mu_0 \) de \(\alpha_0 \) existe est égale à la limite de produit de Riemann lorsque \(|\zeta| \to 0\). Par conséquent nous avons le même résultat pour \(\alpha \).

Or on a

\[0 \leq \left| \prod_{\xi} (I + \Delta \alpha) - \prod_{\zeta} (I + \Delta \alpha) \right| \leq \prod_{\xi} (1 + \Delta \alpha_0) - \prod_{\zeta} (1 + \Delta \alpha_0) \]

Par passage à la limite lorsque \(|\xi| \to 0\) et d’après le lemme 5, on a

\[0 \leq \left| \pi \left| s,t \right| (I + d \alpha) - \prod_{\zeta} (I + \Delta \alpha) \right| \leq \pi \left| s,t \right| (1 + d \alpha_0) - \prod_{\zeta} (1 + \Delta \alpha_0) \]

\[\leq \alpha_0 (D) \exp \alpha_0 (D) \max_{1 \leq i \leq n} (\alpha_0 (D_i \setminus \{s_i\})) \]

Lorsque \(|\zeta| \to 0\) et par le lemme 4, on trouve

\[\prod_{\zeta} (I + \Delta \alpha) \to \pi \left| s,t \right| (I + d \alpha) \text{ uniformément dans } 0 \leq s \leq t \leq u, \text{ } u \text{ fixé.} \]

Par passage à la limite de (2.1) lorsque \(|\zeta| \to 0\) on trouve

\[\lim_{|\zeta| \to 0} \left| \prod_{\zeta} (I + \Delta \alpha) - I - \alpha (D) \right| \leq \lim_{|\zeta| \to 0} \prod_{\zeta} (1 + \Delta \alpha_0) - 1 - \alpha_0 (D) \]
\[\Rightarrow |\mu(s, t) - I - \alpha(D)| \leq \pi_{[s,t]} (1 + d\alpha_0) - 1 - \alpha_0(D) = \mu_0(s, t) - 1 - \alpha_0(D) \]

C'est à dire \(\mu - I - \alpha \) est dominé par \(\mu_0 - 1 - \alpha_0 \).

Avec la même procédure et en utilisant la formule 1) du lemme 1 on trouve que \(\mu - I \) est dominé par \(\mu_0 - 1 \), en effet

\[
\left| \prod_\zeta (I + \Delta\alpha) - I \right| = \left| \sum_{1 \leq i \leq n} (I + \alpha(D_1)) \ldots (I + \alpha(D_{i-1})) \alpha(D_i) \right|
\]

\[
\leq \sum_{1 \leq i \leq n} |(I + \alpha(D_1))| \ldots |(I + \alpha(D_{i-1}))| |\alpha(D_i)|
\]

\[
\leq \sum_{1 \leq i \leq n} (1 + \alpha_0(D_1)) \ldots (1 + \alpha_0(D_{i-1})) \alpha_0(D_i)
\]

\[
= \prod_{1 \leq i \leq n} (1 + \alpha_0(D_i)) - 1
\]

\[
= \prod_\zeta (1 + \Delta\alpha_0) - 1
\]

Par passage à la limite lorsque \(|\zeta| \to 0 \) on trouve

\[|\mu - I| \leq \mu_0 - 1. \]
Nous continuons en prouvant au théorème 9 le résultat inverse pour l’intégrale additive d’une fonction multiplicative et, en conclusion, en montrant dans le théorème 10 que les deux opérations sont l’une inverse de l’autre.

Théorème 9

Soit μ et μ_0 deux fonctions multiplicatives avec $\mu - I$ dominée par $\mu_0 - 1$. Soit

$$\alpha_0 = \int d(\mu_0 - 1),$$

alors

α définie par

$$\alpha(s,t) = \int d(\mu - I) = \lim_{|s,t| \to 0} \sum_{|\zeta|} \Delta(\mu - I)$$

existe, et cette limite est uniforme dans $0 \leq s \leq t \leq u$ pour $u < \infty$.

La fonction d’intervalle α est additive, est dominée par α_0 et $\mu - I - \alpha$ est dominée par $\mu_0 - 1 - \alpha_0$.

Preuve. On a

$$\mu(D) - I - \sum_{\zeta} \Delta(\mu - I) = \prod_{1 \leq i \leq n} \mu(D_i) - I - \sum_{1 \leq i \leq n} (\mu(D_i) - I)$$

Par la relation 3) du lemme 1, on obtient

$$\left|\mu(D) - I - \sum_{\zeta} \Delta(\mu - I)\right| = \left|\sum_{1 \leq i < j \leq n} (\mu(D_i) - I) \mu(D_{i+1}) \ldots \mu(D_{j-1}) (\mu(D_j) - I)\right|$$

$$= \left|\sum_{1 \leq i < j \leq n} (\mu(D_i) - I) \mu(D_{i+1} \cup \ldots \cup D_{j-1}) (\mu(D_j) - I)\right|$$

$$\leq \sum_{1 \leq i < j \leq n} |(\mu(D_i) - I)| |\mu(D_{i+1} \cup \ldots \cup D_{j-1})| |(\mu(D_j) - I)|$$
\[
\leq \mu(D_0) - 1 - \sum_{\zeta} \Delta(\mu_0 - 1).
\]

Maintenant, soit \(\xi\) une partition plus fine que \(\zeta\) et \(\lambda_i\) la partition correspondante de \(D_i\), alors

\[
\sum_{\zeta} \Delta(\mu - I) - \sum_{\xi} \Delta(\mu - I) = \sum_{1 \leq i \leq n} \left[\mu(D_i) - I - \sum_{\lambda_i} \Delta(\mu - I) \right].
\]

Donc

\[
\left| \sum_{\zeta} \Delta(\mu - I) - \sum_{\xi} \Delta(\mu - I) \right| \leq \sum_{\zeta} \Delta(\mu_0 - 1) - \sum_{\xi} \Delta(\mu_0 - 1).
\] (2.3)

On sait que \(\alpha_0 = \int d(\mu_0 - 1)\) existe et que

\[
\alpha_0 = \int_{[s, t]} d(\mu_0 - 1) = \lim_{|\zeta| \to 0} \sum_{\zeta} \Delta(\mu_0 - 1)
\]

Donc la limite de \(\sum_{\zeta} \Delta(\mu - I)\) existe (quand \(|\zeta| \to 0\)).

Montrons que \(|\alpha(s, t)| \leq \alpha_0(s, t)\)

On a

\[
|\alpha(s, t)| = \left| \lim_{|\zeta| \to 0} \sum_{\zeta} \Delta(\mu - I) \right| \leq \lim_{|\zeta| \to 0} \sum_{\zeta} \Delta(\mu_0 - 1) = \alpha_0(s, t)
\]

On a, \(\alpha\) est dominée par \(\alpha_0\) et \(\alpha_0 = \int d(\mu_0 - 1)\)

Alors d'après la proposition 3
\[\mu_0(s,t) = \pi_{[s,t]} (1 + d\alpha_0). \]

Par le théorème 8

\[\mu(s,t) = \lim_{|\zeta| \to 0} \prod_{\zeta} (I + \Delta \alpha) \]

existe et cette limite est uniforme,

donc d’après (1.16)

\[|\sum_{\zeta} \Delta (\mu - I) - \alpha(s,t)| \leq |\mu(D) - \prod_{\zeta} (I + \Delta \alpha)|, \]

par passage à la limite, il vient

\[\left| \lim_{|\zeta| \to 0} \sum_{\zeta} \Delta (\mu - I) - \alpha(s,t) \right| \leq \left| \mu(D) - \lim_{|\zeta| \to 0} \prod_{\zeta} (I + \Delta \alpha) \right|. \]

Et cette limite existe et est uniforme dans \(0 \leq s \leq t \leq u\) pour \(u < \infty\).

Par passage à la limite dans 2.3 lorsque \(|\zeta| \to 0\) on trouve que \(\mu - I - \alpha\) est dominée par \(\mu_0 - 1 - \alpha_0\).

Théorème 10 a- Si \(\alpha\) est une fonction additive et à variation bornée, et si \(\mu\) est définie par

\[\mu(s,t) = \pi_{[s,t]} (I + d\alpha) \quad (2.4) \]

alors
\[\alpha(s, t) = \int_{[s,t]} d(\mu - I) \quad (2.5)\]

b- Si \(\mu\) est une fonction multiplicative et \(\mu - I\) à variation bornée et \(\alpha\) est définie par (2.5) alors (2.4) est vérifiée.

Preuve.

a- On a

\[\mu(s, t) = \pi_{[s,t]} (I + d\alpha)\]

Soit \(\alpha_0\) dominant \(\alpha\), et soit \(\mu_0\) l'intégrale produit de \(\alpha_0\) c'est à dire

\[|\alpha(s, t)| \leq \alpha_0(s, t)\]

et

\[\mu_0(s, t) = \pi_{[s,t]} (1 + d\alpha_0)\,.

Alors d'après le théorème 8 on a

\[|\mu - I| \leq \mu_0 - 1\]

Cette inégalité nous permet de dire que si \(\mu - I\) est à variation bornée, alors \(\int_{[s,t]} d(\mu - I) \) existe, d'après le théorème 9.

Maintenant on a d'après le théorème 8 et la proposition 3

\[\left| \sum_{\zeta} \Delta(\mu - I) - \alpha(s, t) \right| = \left| \sum_{1 \leq i \leq n} (\mu(D_i) - I - \alpha(D_i)) \right|\]
\[
\leq \sum_{1 \leq i \leq n} (\mu_0(D_i) - 1 - \alpha_0(D_i))
\]

\[
= \sum_{\zeta} \Delta(\mu_0 - 1) - \alpha_0(s,t) \to 0.
\]

Donc

\[
\alpha(s,t) = \int_{|s,t|} d(\mu - I).
\]

b-Suivons les mêmes étapes pour \(\mu \), en utilisant les hypothèses

\(\mu \) est une fonction multiplicative.

\(\mu - I \) est dominée par \(\mu_0 - 1 \).

\[
\alpha(s,t) = \int_{|s,t|} d(\mu - I).
\]

Alors d’après le théorème 9, \(\alpha \) est dominée par \(\alpha_0 \), c’est à dire

\[
\alpha(s,t) = \int_{|s,t|} d(\mu - I) \leq \alpha_0(s,t) = \int_{|s,t|} d(\mu_0 - 1).
\]

D’après le théorème 8 et la proposition 3, on a \(\pi(I + d\alpha) \) existe et on a

\[
\left| \prod_{1 \leq i \leq n} \mu(D_i) - \prod_{\zeta} (I + \Delta\alpha) \right|
\]

\[
= \left| \sum_{1 \leq i \leq n} \mu(D_i) \ldots \mu(D_{i-1}) (\mu(D_i) - I - \alpha(D_i)) (I + \alpha(D_{i+1})) \ldots (I + \alpha(D_n)) \right|
\]
\[\leq \mu_0 (s, t) - \prod_{\zeta} (1 + \Delta \alpha_0) \xrightarrow{\zeta \to 0} 0. \]

2.3 Autres définitions de l’intégrale produit

Nous donnons ci dessous d’autre définitions équivalentes de l’intégrale produit et nous montrons leurs équivalences. En outre, nous donnons un résultat central sur la différence de deux intégrales produit, appelée l’équation de Duhamel.

2.3.1 Limite produit

\[\mu (t) = \prod_{s \in [0,t]} (I + \alpha d(s)) = \lim_{\max |t_i - t_{i-1}| \to 0} \prod_{1 \leq i \leq n} (I + \alpha ([t_{i-1}, t_i])) ; \]

où 0 = t_0 < t_1 < \ldots < t_n est une partition de [0, t]. Les termes de ce produit de matrices sont pris dans leurs ordres naturels.

2.3.2 Equation intégrale de Volterra

\[\mu (t) = I + \int_{s \in [0,t]} \mu (s_) \alpha (ds) . \]

Où \(\mu (s_) \) est la limite de \(\mu \) à gauche de \(s \).
2.3.3 Série de Péano

\[\mu(t) = I + \sum_{n \geq 1} \int_{0 < t_1 < \ldots < t_n \leq t} \alpha(dt_1) \ldots \alpha(dt_n). \]

Chacune des définitions précédentes a ses avantages. Ainsi la première motive la notation de l’intégrale produit et suggère plusieurs de ses propriétés. La seconde est la définition historique et semble la meilleure pour les semi-martingales. Enfin la dernière est un outil technique utile pour obtenir quelques résultats.

2.3.4 Cas commutatif

Dans le cas \(p = 1 \), lorsque \(\alpha \) est une simple mesure signée alors

\[\mu(t) = \prod_{s \in [0,t]} (1 + \alpha(\{s\})) \exp(\alpha^c(t)). \]

Où \(\alpha^c \) est la partie continue de \(\alpha \) définie par

\[\alpha^c(t) = \alpha(t) - \sum_{s \leq t} \alpha(\{t\}). \]

Nous allons maintenant montrer l’équivalence entre ces différentes définitions.

Nous pouvons définir une mesure matricielle produit définie sur les sous-ensembles bornés de \(\mathbb{R}^n_+ \) en posant

\[\alpha^n(D_1 \times \ldots \times D_n) = \alpha(D_1) \ldots \alpha(D_n). \]

Notons que
\[|\alpha^n (D_1 \times \ldots \times D_n)| \leq \prod_{1 \leq i \leq n} |\alpha (D_i)| \leq \prod_{1 \leq i \leq n} \alpha_0 (D_i) = \alpha^n_0 (D_1 \times \ldots \times D_n). \]

Ainsi \(\alpha^n \) est dominée par \(\alpha^n_0 \), c’est la mesure produit habituelle.

Soit \(D \) un intervalle, notons par \(U (D; n) \) le sous ensemble de \(\mathbb{R}^n_+ \) défini par

\[U (D; n) = \{(u_1, \ldots, u_n) \in D^n; u_1 < \ldots < u_n\}. \]

Alors la série de Péano est donnée par

\[P (D, \alpha) = I + \sum_{n \geq 1} \alpha^n (U (D; n)) \]

\[= I + \sum_{n \geq 1} \int \ldots \int_{\{u_1 < \ldots < u_n; u_i \in D\}} \alpha (du_1) \ldots \alpha (du_n) \]

Remarquons que la série de Péano est dominée par

\[P (D, \alpha) = 1 + \sum_{n \geq 1} \alpha^n_0 (U (D; n)) \leq 1 + \sum_{n \geq 1} \frac{(\alpha_0 (D))^n}{n!} \]

\[= \exp (\alpha_0 (D)). \]

Ceci nous donne la convergence de la série et les inégalités suivantes

\[|P (D, \alpha)| \leq P (D, \alpha_0) \leq \exp (\alpha_0 (D)) \] (2.6)

\[|P (D, \alpha) - I| \leq P (D, \alpha_0) - 1 \leq \alpha_0 (D) \exp (\alpha_0 (D)) \] (2.7)
\[|P(D, \alpha) - I - \alpha(D)| \leq P(D, \alpha_0) - 1 - \alpha_0(D) \leq \frac{1}{2} (\alpha_0(D))^2 \exp(\alpha_0(D)) \quad (2.8) \]

On note l’ensemble \(U([s, t]; n) \) par \(U(s, t; n) \) et la fonction d’intervalle \(P([s, t], \alpha) \) par \(P(s, t, \alpha) \).

Proposition 11 *La fonction d’intervalle \(P(s, t, \alpha) \) est multiplicative.*

Preuve. On définit sur \(\mathbb{R}_+^n \) l’ensemble

\[U(s, u, t, i; n) = \{ s < u_1 < \ldots < u_i \leq u < u_{i+1} < \ldots < u_n \leq t \}; 0 < i < n. \]

\[U(s, u, t, 0; n) = \{ s < u < u_1 < \ldots < u_i < \ldots < u_n \leq t \}, \]

\[U(s, u, t, n; n) = \{ s < u_1 < \ldots < u_i < u_{i+1} < \ldots < u_n \leq u \leq t \} \]

Nous obtenons

\[U(s, t; n) = \{ s < u_1 < \ldots < u_n \leq t \} = \bigcup_{0 \leq i \leq n} U(s, u, t, i; n) \]

Alors

\[\alpha^n (U(s, t; n)) = \alpha^n \left[\bigcup_{0 \leq i \leq n} (U(s, u, t, i; n)) \right] = \sum_{0 \leq i \leq n} \alpha^n (U(s, u, t, i; n)) = \sum_{0 \leq i \leq n} \alpha^i (U(s, u; n)) \alpha^{n-i} (U(u, t; n)). \]

On somme sur \(n \) et on trouve le résultat. \(\blacksquare \)

Nous sommes maintenant en mesure d’exéber le lien avec l’intégrale produit.
Théorème 12 La série de Péano est égale à l’intégrale produit, i.e.

\[P(s, t, \alpha) = \pi_{|s,t|} (I + d\alpha). \]

Preuve. D’après la relation 4) du lemme 1, notons que

\[P(s, t, \alpha) \prod_{\zeta} (I + \Delta \alpha) = \prod_{1 \leq i \leq n} P(D_i, \alpha) - \prod_{1 \leq i \leq n} (I + \alpha(D_i)) \]

\[= \sum_{1 \leq i \leq n} (I + \alpha(D_1)) \ldots (I + \alpha(D_{i-1})) \times (P(D_i, \alpha) - I - \alpha(D_i))(P(D_{i+1}, \alpha)) \ldots (P(D_n, \alpha)). \]

Alors

\[
\left| P(s, t, \alpha) - \prod_{\zeta} (I + \Delta \alpha) \right| \\
\leq \sum_{1 \leq i \leq n} (1 + \alpha_0(D_1)) \ldots (1 + \alpha_0(D_{i-1}))(P(D_i, \alpha_0) - 1 - \alpha_0(D_i)) \\
(P(D_{i+1}, \alpha_0)) \ldots (P(D_n, \alpha_0))
\]

En suivant les mêmes étapes de la preuve du lemme 5, en remplaçant \(\pi_{|s,t|} (1 + d\theta) \) par \(P(., \alpha_0) \), et on notant que

\[P(\{s\}, \alpha_0) = 1 + \alpha_0(\{s\}), \]

on trouve
\[P (s, t; \alpha) - \prod_{\zeta} (I + \Delta \alpha) \]

\[\leq \max_{1 \leq i \leq n} \alpha_0 (D_i \setminus \{s_i\}) \alpha_0 (s, t) \exp (\alpha_0 (s, t)). \]

Puis lorsque \(|\zeta| \rightarrow 0\) et d’après le lemme 4 on a

\[P (s, t, \alpha) = \pi_{[s, t]} (I + d\alpha). \]

\[\square \]

Proposition 13

\[\pi_{[s, t]} (I + d\alpha) - I = \int_{[s, u]} \pi_{[s, u]} (I + d\alpha) \alpha (du) \text{ équation progressive } (2.9) \]

\[= \int_{[s, t]} \alpha (du) \pi_{[u, t]} (I + d\alpha) \text{ équation rétrograde } (2.10) \]

Preuve. En appliquant le théorème de Fubini aux \((n + 1)\) termes de la série de Péano on trouve

\[\alpha^{n+1} (U (s, t; n + 1)) \]

\[= \int_{[s, t]} \alpha^n ([u_1, \ldots, u_n] : (u_1, \ldots, u_n, u) \in U (s, t; n + 1]) \alpha (du) \]
En sommant sur n on trouve l'équation (2.9).

En suivant les mêmes étapes on trouve l'équation (2.10).

Théorème 14 Soit $\beta(s,t)$ une fonction d'intervalles continue à droite et possédant une limite à gauche pour t et s, de plus β satisfait l'une ou l'autre des deux équations

\[
\beta(s,t) - I = \int_{[s,t]} \beta(s,u_-) \alpha(du)
\]

(2.11)

\[
\beta(s,t) - I = \int_{[s,t]} \alpha(du) \beta(u,t)
\]

(2.12)

Alors

\[
\beta(s,t) = \pi(I + d\alpha).
\]

$L'inverse est également vrai.$

Preuve. Nous avons déjà prouvé l'inverse dans la proposition 13 .

Supposons que β satisfait l'équation (2.11) pour s fixé et $t > s$, β est alors bornée pour t dans un intervalle borné .

Soit

\[
P^n(s,t,\alpha) = I + \sum_{1 \leq k \leq n} \alpha^k(U(s,t;k)) = I + \int_{[s,t]} P^{n-1}(s,u_,\alpha) \alpha(du)
\]
Donc

$$\beta(s, t) - P^n(s, t, \alpha) = \int_{[s, t]} \left[\beta(s, u_--) - P^{n-1}(s, u_--, \alpha) \right] \alpha(du).$$

A partir de l'équation (2.11) on a

$$|\beta(s, t) - I| = \left| \int_{[s, t]} \beta(s, u--) \alpha(du) \right| \leq \int_{[s, t]} |\beta(s, u--)| |\alpha(du)|$$

$$\leq \sup_{s < u \leq t} |\beta(s, u--)| \int_{[s, t]} \alpha_0(du) = \sup_{s < u \leq t} |\beta(s, u--)| \alpha_0(s, t)$$

Alors

$$|\beta(s, t) - P^n(s, t, \alpha)| \leq \int_{[s, t]} |\beta(s, u--) - P^{n-1}(s, u_--\alpha)| |\alpha(du)|$$

$$\leq \int_{[s, t]} \int_{[s, t]} |\beta(s, u__) - P^{n-2}(s, u_--\alpha)| |\alpha(du)| |\alpha(du)|$$

$$\leq \int_{[s, t]} \cdots \int_{[s, t]} |\beta(s, u--) - I| |\alpha(du)| \cdots |\alpha(du)|$$

$$\leq \sup_{s < u \leq t} |\beta(s, u--)| \alpha_0(s, t) \int_{[s, t]} |\alpha(du)| \cdots |\alpha(du)|$$

$$= \sup_{s < u \leq t} |\beta(s, u--)| (\alpha_0(s, t))^n$$

Pour $n \to \infty$ on trouve que
\[\beta(s, t) = \lim_{n \to \infty} P^n(s, t, \alpha) \]

Lemme 15 Soit \(\alpha \) une fonction continue sur \(\mathbb{R}_+ \) et à variation bornée sur tout intervalle fini, alors

\[\alpha^n(t) = \alpha^n(0) + \int_{[0,t]} n\alpha^{n-1}(s) \, d\alpha(s). \]

Preuve. Procédons par récurrence

si \(n = 1 \), on obtient

\[\alpha(t) = \alpha(0) + \int_{[0,t]} d\alpha(s) \]

qui est vrai par la définition de \(d\alpha \).

Supposons que :

\[\alpha^n(t) = \alpha^n(0) + \int_{[0,t]} n\alpha^{n-1}(s) \, d\alpha(s), \]

ce qui veut dire

\[d\alpha^n(s) = n\alpha^{n-1}(s) \, d\alpha(s). \]

La formule d'intégration par parties, pour \(F = \alpha^n \) et \(G = \alpha \), donne

\[\alpha^n(t) \alpha(t) - \alpha^n(0) \alpha(0) = \int_{[0,t]} \alpha^n(s) \, d\alpha(s) + \int_{[0,t]} \alpha(s) \, d\alpha^n(s) \]
cela implique que

\[\alpha^{n+1}(t) - \alpha^{n+1}(0) = \int_{[0,t]} \alpha^n(s) \, d\alpha(s) + \int_{[0,t]} n\alpha^{n-1}(s) \, d\alpha(s). \]

Donc

\[\alpha^{n+1}(t) = \alpha^{n+1}(0) + \int_{[0,t]} (n+1) \alpha^n(s) \, d\alpha(s) \]

ce qui montre que la formule est vérifié au rang \(n+1 \).

Proposition 16 Soit \(\alpha \) une fonction définie sur \(\mathbb{R}_+ \), continue à droite et à variation bornée sur tout intervalle fini et telle que \(\alpha(0) = 0 \). Alors l’équation

\[\mu(t) = \mu(0) + \int_{[0,t]} \mu(s-) \, d\alpha(s) \] \hspace{1cm} (2.13)

a une solution bornée sur tout compact et cette solution est

\[\mu(t) = \mu(0) \left(\prod_{s \leq t} (1 + \alpha\{s\}) \right) \exp(\alpha^c(t)) \] \hspace{1cm} (2.14)

 où

\[\alpha^c(t) = \alpha(t) - \sum_{s \leq t} \Delta\alpha(s), \]

est la partie continue de \(\alpha \) et \(\Delta\alpha(s) \) est le saut de \(\alpha \) au point \(s \).

Preuve. Montrons que \(\mu(t) \) donnée par l’équation (2.14) vérifie l’équation (2.13).

\[\mu(t) \text{ s’écrit } \mu(t) = F(t)G(t) \]

 où
\[F(t) = \mu(0) \left(\prod_{s \leq t} (1 + \alpha\{s\}) \right), \quad G(t) = \exp(\alpha^c(t)) \]

D’après la formule d’intégration par parties

\[\mu(t) = \mu(0) + \int_{[0,t]} F(s_-) dG(s) + \int_{[0,t]} G(s) dF(s) \]

or d’après le lemme 15, \(\alpha^c \) étant continue

\[dG(s) = d(\exp(\alpha^c(s))) = G(s) d\alpha^c(s) \]

et \(F \) étant une fonction de saut

\[\int_{[0,t]} G(s) dF(s) = \sum_{s \leq t} G(s) \Delta F(s). \]

Or

\[\Delta F(s) = F(s) - F(s_-) = F(s_-) [\Delta \alpha(s)]. \]

Par conséquent

\[\mu(t) = \mu(0) + \int_{[0,t]} F(s_-) G(s) d\alpha^c(s) + \sum_{s \leq t} G(s) F(s_-)(\Delta \alpha(s)) \]

\[= \mu(0) + \int_{[0,t]} F(s_-) G(s_-) d\alpha(s) = \mu(0) + \int_{[0,t]} \mu(s_-) d\alpha(s). \]

Ce qui montre que \(\mu(t) \) donnée par l’équation (2.14) est solution de l’équation (2.13).

Reste à montrer l’unicité.
Soit μ_1 et μ_2 deux solutions de l’équation (2.13). Posons $\mu_d = \mu_1 - \mu_2$, on a

$$\mu_d(t) = \int_{[0,t]} \mu(s_-) \, d\alpha(s).$$

Ce qui implique que

$$|\mu_d(t)| \leq \int_{[0,t]} |\mu(s_-)| \, d\alpha(s).$$

Montrons que l’on a aussi

$$|\mu_d(t_-)| \leq \int_{[0,t]} |\mu_d(s_-)| \, d\alpha(s).$$

En effet

$$|\mu_d(t_-)| = \left| \lim_{v \leq t} \mu_d(v) \right| \leq \lim_{v \leq t} \int_{[0,v]} |\mu_d(s_-)| \, d\alpha(s) \leq \lim_{v \leq t} \int_{[0,v]} |\mu_d(s_-)| \, d\alpha(s) = \int_{[0,t]} |\mu_d(s_-)| \, d\alpha(s).$$

Donc par itérations on obtient

$$|\mu_d(t)| \leq \int_{[0,t]} |\mu_d(s_1^-)| \, d\alpha(s_1) \leq \int_{[0,s_1]} \int_{[0,t]} |\mu_d(s_2^-)| \, d\alpha(s_2).$$

On peut, sans perte de généralité, supposer que α est croissante. On a

$$|\mu_d(t)| \leq \int_{[0,t]} |\mu_d(s_-)| \, d\alpha(s) \leq \int_{[0,t]} \int_{[0,s_1]} |\mu_d(s_2^-)| \, d\alpha(s_2) \leq \int_{[0,t]} \int_{[0,s_1]} \int_{[0,s_{k+1}]} |\mu_d(s_{k+1}^-)| \, d\alpha(s_{k+1}).$$
En posant

\[K(t) = \sup_{s \leq t} |\mu_d(s_-)|, \]

on obtient

\[|\mu_d(t)| \leq K(t) \int_{[0,t]} \alpha(s_1) \, ds_1 \int_{[0,s_1]} \alpha(s_2) \, ds_2 \ldots \int_{[0,s_{k-1}]} |\mu_d(s_{k-1})| \alpha(s_k) \]

si on suppose que \(\alpha \) est croissante et continue à droite, on a

\[\int_{[0,t]} \alpha^n(s_-) \, ds \leq \frac{\alpha^{n+1}(t)}{(n+1)!}. \]

En effet

Par la formule d'intégration par parties

\[\alpha^2(t) = \alpha^2(0) + \int_{[0,t]} \alpha(s_-) \, ds + \int_{[0,t]} \alpha(s) \, ds. \]

Alors

\[\int_{[0,t]} \alpha(s_-) \, ds \leq \frac{\alpha^2(t)}{2!}, \]

et par récurrence, on obtient

\[\int_{[0,t]} \alpha^n(s_-) \, ds \leq \frac{\alpha^{n+1}(t)}{(n+1)!}. \]

Donc
\[|\mu_d (t)| \leq |\mu_d (t)| \leq K (t) \int_{0,t} d\alpha (s_1) \int_{0,s_1} d\alpha (s_2) \ldots \int_{0,s_{k-1}} d\alpha (s_k)\]
\[\leq K (t) \int_{0,t} d\alpha (s_1) \int_{0,s_1} d\alpha (s_2) \ldots \int_{0,s_{k-2}} d\alpha (s_{k-1}) \frac{\alpha^2 (s_{k-1})}{2!}\]
\[\leq K (t) \int_{0,t} d\alpha (s_1) \int_{0,s_1} d\alpha (s_2) \ldots \int_{0,s_{k-3}} d\alpha (s_{k-2}) \frac{\alpha^3 (s_{k-3})}{3!}\]
\[\leq \frac{K (t)}{(k+1)!} \int_{0,t} \alpha^k (s_1) d\alpha (s_1),\]

\[\frac{1}{(k+1)!}\] est le terme général de la série convergente \(\sum \frac{1}{(k+1)!} = e\), d'où

\[\lim_{k \to \infty} \frac{K (t)}{(k+1)!} \alpha^k = 0 \Rightarrow \mu_d = \mu_1 - \mu_2 = 0.\]

\[\begin{align*}
\text{Théorème 17} & \quad \text{Equation de Duhamel} \\
\text{Soient} \alpha_1 \text{et} \alpha_2 \text{deux fonctions additives, alors}
\end{align*}\]

\[\pi (I + d\alpha_1) - \pi (I + d\alpha_2) = \int_{[s,t]} \pi (I + d\alpha_1) (\alpha_1 - \alpha_2) (du) \pi (I + d\alpha_2).\]

(2.15)

\[\text{Preuve.} \quad \text{Considérons la mesure} \alpha_{1,2}^{(n,m)} \text{sur} \mathbb{R}^{n+m}_+ \text{définie par}\]

\[\alpha_{1,2}^{(n,m)} (A_1 \times \ldots \times A_n \times B_1 \times \ldots \times B_m)\]
\[= \alpha_1(A_1) \times \ldots \times \alpha_1(A_n) \times \alpha_2(B_1) \times \ldots \times \alpha_2(B_m). \]

Par l’application du théorème de Fubini, il vient

\[
\alpha_{1,2}^{(n,m)}(U(s,t;n+m))
\]

\[
= \int_{[s,t]} \alpha_1^{(n-1)}(U(s,u_-;n-1)) \alpha_1(du) \alpha_2^{(m)}(U(s,t;m))
\]

\[
= \int_{[s,t]} \alpha_1^{(n)}(U(s,u_-;n)) \alpha_2(du) \alpha_2^{(m-1)}(U(s,t;m-1))
\]

On somme sur \(n \geq 1\) et \(m \geq 1\) on trouve

\[
\int_{[s,t]} \pi (I + d\alpha_1) \alpha_1(du) \left(\pi_{[n,t]}(I + d\alpha_2) - I \right)
\]

\[
= \int_{[s,t]} \left(\pi_{[s,u]}(I + d\alpha_1) - I \right) \alpha_2(du) \pi_{[u,t]}(I + d\alpha_2),
\]

L’application des équations (2.9) et (2.10) nous donne alors le résultat désiré. ■
Chapitre 3

Différentiabilité de l’intégrale produit

Dans ce chapitre E, F, et G désignent des espaces vectoriels normés ; $\mathcal{L}(E, F)$ est l’espace des applications linéaires et continues de E dans F.

Nous allons nous intéresser à quelques propriétés de l’intégrale produit.

Afin de détailler ces propriétés, rappelons d’abord la définition de la différentiabilité au sens d’Hadamard, pour plus de détails on peut se referer à T. M. Flett.
3.1 Rappel sur la différentiabilité au sens d’Hadamard

3.1.1 Définition (vecteur dirigé)

Soit $H \subseteq E$, $x_0 \in E$, on dit que le vecteur $h \in H$ est dirigé dans H en x_0, s’il existe un voisinage W de h et un nombre positif ϵ tel que $x_0 + tk \in H$, pour tout $k \in W$ et $0 < t < \epsilon$.

3.1.2 Définition (variation d’Hadamard)

Soit f une fonction définie sur l’ensemble $A \subseteq E$ à valeurs dans F et $x_0 \in A$.

On dit que la fonction f a une variation d’Hadamard en x_0 pour l’accroissement h, si h est dirigé dans A en x_0 et s’il existe $l \in F$ tel que,

pour chaque suite (h_n) dans E qui converge vers h et chaque suite de nombres positifs (t_n) qui converge vers 0,

on a

$$
\lim_{n \to \infty} \frac{f(x_0 + t_n h_n) - f(x_0)}{t_n} = l.
$$

L’élément l est appelé la variation d’Hadamard de f en x_0 pour l’accroissement h, et nous le notons par $\partial f(x_0) h$.
3.1.3 Différentiabilité au sens d’Hadamard

Soit f une fonction définie sur l’ensemble $A \subseteq E$ à valeurs dans F et x_0 un point intérieur de A.

On dit que f est différentiable au sens d’Hadamard en x_0 si la variation d’Hadamard $\partial f(x_0)h$ existe pour tout $h \in E$ et si la fonction $h \mapsto \partial f(x_0)h$ appartient à $\mathcal{L}(E,F)$.

Cette fonction $\partial f(x_0)$ qu’on note aussi f_{x_0} est appelée la dérivée au sens d’Hadamard de f en x_0.

La fonction $\partial f : x \mapsto \partial f(x)$, dont le domaine est l’ensemble des points intérieurs de A tels que f est différentiable au sens d’Hadamard, est appelée la différentielle au sens d’Hadamard de f.

Autrement dit f est différentiable au sens d’Hadamard en x_0 si

$$\lim_{n \to \infty} \frac{f(x_0 + t_nh_n) - f(x_0)}{t_n} = \partial f(x_0)h.$$

existe pour tout $h \in E$, où (h_n) est une suite d’éléments dans E qui converge vers h, (t_n) est une suite de réels positifs qui converge vers 0 et $\partial f(x_0) \in \mathcal{L}(E,F)$.

3.1.4 Différentiabilité tangentiellement

La définition précédente requiert que $\partial f(x_0)h$ existe pour tout $h \in E$. Si on exige l’existence de $\partial f(x_0)h$ seulement pour $h \in H$ (H étant sous espace de E), on dit que f est différentiable au sens d’Hadamard tangentiellement à H.
3.1.5 Règle de la chaine

Soit \(f \) une fonction définie sur l’ensemble \(A \subseteq E \) à valeurs dans \(F \), et soit \(g \) une fonction définie sur l’ensemble \(B \subseteq F \) à valeurs dans \(G \).

Si \(f \) est différentiable au sens d’Hadamard en \(x_0 \) et si \(g \) est différentiable au sens d’Hadamard en \(y_0 = f(x_0) \), alors

\(g \circ f \) est différentiable au sens d’Hadamard en \(x_0 \) et on a

\[
\partial (g \circ f) (x_0) = \partial g (y_0) \circ \partial f (x_0).
\]

3.2 Continuité et différentiabilité de l’intégrale produit

3.2.1 Outils préliminaires

Fixons un intervalle \([0, \tau]\) et introduisons les normes suivantes

1-La norme en variation d’une fonction d’intervalles \(\beta \) qui est simplement sa variation sur cet intervalle

\[
\|\beta\|_v = |\beta| (0, \tau) = \sup_{\zeta} \sum_{1 \leq i \leq n} |\beta(D_i)|.
\]

2-La norme sup donnée par

\[
\|\beta\|_\infty = \sup_{0 \leq s \leq t \leq \tau} |\beta(s, t)|.
\]
Rappelons la formule d'intégration par parties pour des matrices de fonctions \(K \) et \(H \), continues à droites avec limites à gauche et à variations bornées,

\[
(HK) ([s,t]) = H (t) K (t) - H (s) K (s) = \int_{[s,t]} H_- (dK) + \int_{[s,t]} (dH) K.
\]

Lemme 18 Soient \(M, K \) et \(U \) des matrices de fonctions où \(M \) et \(K \) sont à variations bornées. Alors

\[
\left\| \int (dM) K \right\|_{\infty} \leq 2 \| M \|_{\infty} \left\| K \right\|_{v}, \tag{3.1}
\]

\[
\left\| \int U (dM) \right\|_{\infty} \leq 2 \| M \|_{\infty} \left\| U \right\|_{v}, \tag{3.2}
\]

\[
\left\| \int U (dM) K \right\|_{\infty} \leq 4 \| M \|_{\infty} \left\| U \right\|_{v} \left\| K \right\|_{v}. \tag{3.3}
\]

Preuve. Les intégrales par rapport à \(M \) sont définies par l'intégration par parties. Puisque \(\| K \|_{\infty} \leq \| K \|_{v} \), on a

\[
\left\| \int (dM) K \right\|_{\infty} = \left\| MK - \int M dK \right\|_{\infty} \leq \| MK \|_{\infty} + \int \| M \|_{\infty} dK
\]

\[
\leq \| MK \|_{\infty} + \| M \|_{\infty} K ([0, \tau]) \leq \| M \|_{\infty} \| K \|_{v} + \| M \|_{\infty} \| K \|_{\infty}
\]

\[
\leq 2 \| M \|_{\infty} \| K \|_{v}.
\]

Les relations (3.2) et (3.3) sont prouvées de la même façon. ■

Proposition 19 Soit \(\alpha \) et \(\beta \) des fonctions d'intervalles additives à variations bornées, alors

\[
\pi \cdot \int_{[s,t]} \left(I + d(\alpha + \beta) \right) - \pi \cdot \int_{[s,t]} (I + d\alpha)
\]
\[= \sum_{1 \leq m \leq n} \int \cdots \int_{s < u_1 < \ldots < u_m < u_{m+1} = t} \pi (I + d\alpha) \times \prod_{1 \leq i \leq m} \left(\beta (du_i) \pi (I + d\alpha) \right)\]

\[+ \int \cdots \int_{s < u_0 < \ldots < u_n < u_{n+1} = t} \pi (I + d(\alpha + \beta)) \times \prod_{0 \leq i \leq n} \left(\beta (du_i) \pi (I + d\alpha) \right)\]

En particulier, pour \(n = 0\) on obtient l’équation de Duhamel ;

\[\pi (I + d(\alpha + \beta)) - \pi (I + d\alpha) = \int \pi (I + d(\alpha + \beta)) \beta (du) \pi (I + d\alpha) \quad (3.4)\]

Et pour \(n = 1\), nous obtenons

\[\pi (I + d(\alpha + \beta)) - \pi (I + d\alpha) - \int \pi (I + d\alpha) \beta (du) \pi (I + d\alpha)\]

\[= \int \int_{s < u < v < t} \pi (I + d(\alpha + \beta)) \times \beta (dv) \pi (I + d\alpha) \beta (dv) \pi (I + d\alpha) \quad (3.5)\]

Preuve. Par l’application répétée de l’équation du Duhamel nous obtenons le résultat. ■

3.2.2 Continuité

Théorème 20 Soit \(\alpha^n, n = 1, 2, \ldots\) une suite de fonctions additives d’intervalles définies sur \([0, \tau]\) telle que \(\|\alpha^n - \alpha\|_\infty \rightarrow 0\) et \(\lim \sup \|\alpha^n\|_\nu < \infty\).

Pour une fonction d’intervalles \(\alpha\) qui est également additive et à variation bornée, définissons
\[\mu^n = \pi (I + d\alpha^n) \quad \text{et} \quad \mu = \pi (I + d\alpha), \]

alors

\[\|\mu^n - \mu\|_\infty \rightarrow 0 \quad \text{lorsque} \ n \rightarrow \infty. \]

Preuve. Posons \(\beta = \alpha^n - \alpha \).

D’après (3.4) et (3.3), on a

\[
\|\mu^n - \mu\|_\infty = \|\pi (I + d\alpha^n) - \pi (I + d\alpha)\|_\infty
\]

\[
= \left\|\int \pi (I + d\alpha^n) (\alpha^n - \alpha) (du) \pi (I + d\alpha)\right\|_\infty
\]

\[
= \left\|\int \mu^n (\alpha^n - \alpha) (du) \mu\right\|_\infty
\]

\[
\leq 4 \|\mu^n\|_v \|\mu\|_v \|\alpha^n - \alpha\|_\infty
\]

Maintenant en appliquant (2.9) et (1.9), il vient

\[
\|\mu^n\|_v = \left\|\pi (I + d\alpha^n)\right\|_v = \left\|\int \pi (I + d\alpha^n) \alpha^n (du) + I\right\|_v \leq \left\|\int \mu^n \alpha^n du\right\|_\infty
\]

\[
\leq \|\mu^n\|_\infty \|\alpha^n\|_v \leq \exp (\|\alpha^n\|_\infty) \|\alpha^n\|_v
\]

Ce qui montre alors que

\[
\|\mu^n - \mu\|_\infty \leq 4 \|\mu^n\|_v \|\mu\|_v \|\alpha^n - \alpha\|_\infty \leq 4 \exp (\|\alpha^n\|_\infty) \|\alpha^n\|_v \|\mu\|_v \|\alpha^n - \alpha\|_\infty \rightarrow 0.
\]

L’intégrale produit est donc continue pour la norme sup. ■
3.2.3 Différentiabilité de l’intégrale produit

Soit α^n, α, μ^n et μ vérifiant les mêmes hypothèses qu’au théorème 20 et telles que

$$\alpha^n = \alpha + t_n h_n,$$

où (t_n) est une suite de réels positifs convergeant vers zéro, et (h_n) est une suite de fonctions additives d’intervalles qui converge en norme supérieure vers une fonction additive d’intervalle h. Alors on a

$$\lim \sup \|\alpha^n\|_v < \infty.$$

Et

$$\left\| \frac{\alpha^n - \alpha}{t_n} \right\| = h_n \xrightarrow{n \to \infty} h$$ en norme sup.

Soit l’application $\Psi : \alpha \to \mu = \pi (I + d\alpha)$, alors

$$t_n^{-1} (\Psi (\alpha^n) - \Psi (\alpha)) (s, t) = t_n^{-1} \left(\frac{\pi}{|s, t|} (I + d\alpha^n) - \frac{\pi}{|s, t|} (I + d\alpha) \right)$$

$$= t_n^{-1} \int_{|s, u|} \pi (I + d\alpha^n) (\alpha^n - \alpha) (du) \frac{\pi}{|u, t|} (I + d\alpha) = \int_{|s, u|} \pi (I + d\alpha^n) h_n (du) \frac{\pi}{|u, t|} (I + d\alpha)$$

Ceci suggère le résultat suivant :

Théorème 21 Considérons l’intégrale produit comme une application
\[\Psi: \alpha \rightarrow \mu(s, t) = \pi (I + d\alpha) \]

de l’ensemble des fonctions additives d’intervalles sur \([0, \tau]\) à variation bornée par une constante \(c\), dans l’ensemble des fonctions d’intervalles sur \([0, \tau]\).

Les deux espaces de départ et d’arrivée sont munis de la norme sup. Alors \(\Psi\) est différentiables au sens d’Hadamard en \(\alpha\), de différentielle donnée par

\[
(d\Psi (\alpha) h)(s, t) = \int_{[s, t]} (\mu(s, u_-)) h(du) \mu(u, t);
\]

où l’intégrale par rapport à \(h\) est définie par la formule d’intégration par parties.

Preuve. D’après les relations (3.3) et (3.5) avec \(\beta = \alpha^n - \alpha;\)

\[
\left\| \mu^n - \mu - \int_{s<u<t} \mu(s, u_-) (d\beta) \mu(u, t) \right\|_{\infty} \leq \left\| \mu^n \right\|_{v} \left\| \mu \right\|_{v} \left(\int_{s<u<v<t} \beta(du) \mu(u, v_-) \beta(dv) \right)_{\infty}. \tag{3.9}
\]

Par l’application répétée de la relation de Kolmogorov sur \(\mu(u, v_-)\), on trouve
\[\mu(u, v-) = I + \int \frac{\pi}{|u,v|} (I + d\alpha) \alpha(dy) = I + \int \alpha(dy) + \int \int \alpha(dx) \mu(x, y-) \alpha(dy). \]

(3.10)

En insérant (3.10) dans (3.6) on obtient

\[\int \int \beta(du) \mu(u, v-) \beta(dv) \]

\[= \int \int \beta(du) \left[\int \alpha(dy) + \int \int \alpha(dx) \mu(x, y-) \alpha(dy) \right] \beta(dv) \]

\[= \int \int \beta(du) \beta(dv) + \int \int \beta(du) \alpha(dy) \beta(dv) \]

\[+ \int \int \int \beta(du) \alpha(dx) \mu(x, y-) \alpha(dy) \beta(y, t-) \]

Donc

\[\left\| \int \int d\beta \mu d\beta \right\|_{\infty} \leq \left\| \int \int d\beta d\beta \right\|_{\infty} + \left\| \beta \right\|_{\infty}^2 \left\| \alpha \right\|_{v} + \left\| \beta \right\|_{\infty}^2 \left\| \mu \right\|_{v} \left\| \alpha \right\|_{v}^2. \]

(3.11)

Par ailleurs

\[\beta^2(s, t) = \int d\beta(v) \int d\beta(u) = \int d\beta(v) \left[\int d\beta(u) + \int d\beta(u) \right] \]

\[\geq \int \int d\beta d\beta + \int d\beta(v) \Delta \beta(v) \geq \int \int d\beta d\beta + \sum_{|s,t|} (\Delta \beta)^2. \]

Ce qui implique que
\[
\int \int_{s<u<v<t} d\beta d\beta \leq \beta^2 (s, t_-) - \sum_{[s,t]} (\Delta \beta)^2
\]
(3.12)

De plus pour \(\beta = \alpha^n - \alpha = t_n h_n \), et en combinant (3.6), (3.11) et (3.12) on obtient

\[
\left\| t_n^{-1} (\mu^n - \mu) - \int \mu dh_n \mu \right\|_\infty \leq c_1 t_n \left\| (\sum (\Delta h_n)^2 + c_2) \right\|
\]

où \(c_1 \) et \(c_2 \) sont des constantes. Par conséquent \(c_1 t_n c_2 \rightarrow 0 \).

Et si \((h_n) \) est à variation uniformément bornée, alors

\[
\left\| c_1 t_n \sum (\Delta h_n)^2 \right\|_\infty \leq t_n 2 \|h_n\|_\infty \|h_n\|_v \rightarrow 0 \cdot
\]

Mais le plus important est de considérer que la variation de \(h_n \) tend vers l’infini, mais \(t_n \|h_n\|_v \) est toujours bornée. Dans ce cas, si nous écrivons

\[
t_n \int \Delta h_n dh_n = \int h_n d\alpha^n - \int h_n d\alpha - \int h_n - d\alpha^n + \int h_n - d\alpha.
\]

Alors

\[
\left\| \int h_n d(\alpha^n - \alpha) \right\|_\infty \leq \left\| \int (h_n - h_m) d(\alpha^n - \alpha) \right\|_\infty + \left\| \int h_m d(\alpha^n - \alpha) \right\|_\infty
\]

\[
\leq \|h_n - h_m\|_\infty \|\alpha^n - \alpha\|_v + 2 \|h_m\|_v \|\alpha^n - \alpha\|_\infty
\]

Lorsque \(n \) et \(m \) tendent vers \(\infty \), \(\left\| \int h_n d(\alpha^n - \alpha) \right\|_\infty \) tend vers 0 en norme supérieure.
Chapitre 4

Quelques applications en
statistique

4.1 Introduction

4.2 Outils de base

4.2.1 Fonction de survie et mesure de hasard

Fonction de survie

Soit T une variable aléatoire positive (appelé un temps de survie), de fonction de répartition

$$F(t) = P(T \leq t).$$

La fonction de survie de T au temps t, notée S, est la probabilité de survie au delà de t, c'est à dire

$$S(t) = P(T > t) = 1 - F(t).$$

Mesure de hasard

Soit T un temps de survie, de fonction de répartition F, la mesure de hazard de T, notée $d\Lambda$, est définie par :

$$d\Lambda(t) = \frac{dF(t)}{1 - F(t_\cdot)}.$$

Censure à droite

Soit T la variable aléatoire d’intérêt, nous observons le couple $X = T \wedge C$ et $\delta = 1_{\{T \leq C\}}$ où C est la variable de censure, δ est l’indicateur de censure, il vaut 1 si la donnée n’est pas censurée et 0 si elle est censurée.
Proposition 22 Soit T un temps de survie de loi diffuse (i.e. $\forall x, P(T = x) = 0$) et de mesure de hasard $d\Lambda$. Alors pour tout $t > 0$ on a :

$$S(t) = \exp \left\{ - \int_0^t d\Lambda(s) \right\}.$$

Plus généralement, si T est un temps de survie de mesure de hasard $d\Lambda$, alors

$$S(t) = (1 - P(T = 0)) \prod_{s \leq t} (1 - \Delta\Lambda(s)) \exp \left\{ - \int_0^t d\Lambda^c(s) \right\},$$

où

$$\Lambda^c(t) = \Lambda(t) - \sum_{u \leq t} \Delta\Lambda(u),$$

est la partie continue de Λ et $\Delta\Lambda(u)$ est le saut de Λ au point u.

Preuve. On a

$$S(t) = \int_{\lbrack t, \infty \rbrack} dF(s) = \int_{\lbrack t, \infty \rbrack} (1 - F(s_\cdot)) d\Lambda(s)$$

$$= \int_{\lbrack 0, t \rbrack} dF(s) - \int_{\lbrack 0, t \rbrack} S(s_\cdot) d\Lambda(s).$$

Cela implique que

$$S(t) = S(0) - \int_{\lbrack 0, t \rbrack} S(s_\cdot) d\Lambda(s),$$

dans le cas général
\[
S(t) = S(0) \left\{ \prod_{s \leq t} (1 - \Delta \Lambda(s)) \exp(-\Lambda^c(t)) \right\},
\]

or

\[
S(0) = P(T > 0) = P(T \geq 0) - P(T = 0) = 1 - P(T = 0),
\]

d'où

\[
S(t) = (1 - P(T = 0)) \prod_{s \leq t} (1 - \Delta \Lambda(s)) \exp \left\{ - \int_0^t \Lambda^c(s) \right\}.
\]

Dans le cas particulier où \(\Lambda \) est continue, on obtient

\[
S(t) = \exp \left(- \int_0^t \Lambda^c(s) \right).
\]

En fait l'équation de Volterra montre que dans les deux cas

\[
S(t) = \prod_{[0,t]} (1 - d\Lambda(s)).
\]

\[\Box\]

4.2.2 Méthode Delta

Théorème 23 Soient \(E \) et \(F \) deux espaces normés linéaires. Soit \(f : A \subset E \longrightarrow F \) une application différentiable au sens d'Hadamard en \(x_0 \) tangentiellement à \(H \). Soit \(T_n : \Omega_n \longrightarrow E \) vérifiant, \(r_n (T_n - x_0) \longrightarrow T \) où la variable aléatoire \(T \) est à valeurs dans \(H \) et \(r_n \longrightarrow \infty \). Alors
\[r_n (f (T_n) - f (x_0)) \longrightarrow \partial f_{x_0} (T). \]

Si \(\partial f (x_0) \) est définie et continue sur tout l’espace \(E \), alors on a aussi

\[r_n (f (T_n) - f (x_0)) = \partial f_{x_0} (r_n (T_n - x_0)) + o_p (1). \]

4.2.3 Théorème de Glivenko–Cantelli

Soient \(X_1, X_2, \ldots \) des variables aléatoires i.i.d. de fonction de répartition \(F \), et \(F_n \) la fonction de répartition empirique. Alors

\[\| F_n - F \|_\infty \overset{p.s.}{\longrightarrow} 0. \]

Nous sommes maintenant en mesure de procéder à l’estimation de la fonction de survie pour des données censurées à droite telle que introduite par Gill et Johansen (1990).

4.3 Estimateur de Kaplan Meier

Soit \(T_1, T_2, \ldots, T_n \) des temps de survie i.i.d. positifs de fonction de répartition \(F \) et de fonction de survie \(S \). Par ailleurs soient \(C_1, C_2, \ldots, C_n \) des variables de censures à droite i.i.d. positives de fonction de répartition \(G \) et de fonction de survie \(H \).

Ceci veut dire que les observations sont données pour tout \(i \) \((1 \leq i \leq n)\) par

\[X_i = T_i \wedge C_i \] et \(D_i = 1_{\{T_i \leq C_i \}}. \]
Définissons :

\[N_n(t) = n^{-1} \sum_{i=1}^{n} 1_{\{X_i \leq t, D_i = 1\}} \text{ et } Y_n(t) = n^{-1} \sum_{i=1}^{n} 1_{\{X_i \geq t\}}. \]

Calculons \(E_N(t) \) et \(E_Y(t) \). On a

\[E_N(t) = \frac{1}{n} \sum_{i=1}^{n} P \{ X_i \leq t, D_i = 1 \} = \frac{1}{n} \sum_{i=1}^{n} P \{ T_i \leq t, T_i \leq C_i \}, \]

or

\[P \{ T_i \leq t, T_i \leq C_i \} = \int_{0}^{t} \int_{0}^{\infty} dF(u) dG(v) = \int_{0}^{t} dF(u) H(u_), \]

donc

\[E_N(t) = \int_{[0,t]} H(u_) dF(u) = EN. \]

De même

\[E_Y(t) = \frac{1}{n} \sum_{i=1}^{n} E \{ 1_{\{X_i \geq t\}} \}. \]

\[= \frac{1}{n} \sum_{i=1}^{n} P \{ X_i \geq t \} = \frac{1}{n} \sum_{i=1}^{n} P \{ X_i \geq t \}. P \{ C_i \geq t \} = S(t_\text{_}).H(t_\text{_}). \]

Ce qui montre que

\[\Lambda(t) = \int_{[0,t]} \frac{d(EN_n)}{EY_n}. \quad (\text{si } EY_n(t) > 0). \]
Cela suggère d’estimer la fonction de hasard cumulé $\Lambda(t)$ par $\tilde{\Lambda}_n(t)$, appelé estimateur de Nelson-Aalen, défini par

$$\tilde{\Lambda}_n(t) = \int_{[0,t]} \frac{dN_n}{Y_n},$$

vu que $S(t) = \pi_{[0,t]} (1 - d\Lambda(s))$, il est naturel d’estimer la fonction de survie $S(t)$ par $\hat{S}_n(t)$, appelé estimateur de Kaplan-Meier ou estimateur produit limite, où

$$\hat{S}_n(t) = \pi_{[0,t]} \left(1 - d\tilde{\Lambda}_n(s) \right).$$

Pour montrer la consistance et la convergence faible de l’estimateur de Kaplan-Meier, nous utilisons la continuité et la différentiabilité, au sens d’Hadamard de l’intégrale produit.

Soit l’intervalle $[0, \tau]$ où τ satisfait $EY_n(\tau) = H(\tau-)S(\tau-) > 0$.

Soit $D[0, \tau]$ l’espace des fonctions c.à.g.l.à.g. à valeurs réelles définies sur $[0, \tau]$ muni de la norme sup.

Soit $D_- [0, \tau]$ l’espace des fonctions c.à.g.l.à.d. à valeurs réelles définies sur $[0, \tau]$

N_n et EN_n sont croissantes, bornées et continues à droite, donc elles sont à variation uniformément bornée.

Y_n et EY_n sont croissantes, bornées et continues à gauche, elles sont aussi à variation uniformément bornée.

On remarque que, \hat{S}_n s’écrit comme la composée des applications suivantes

$$D[0, \tau] \times D_- [0, \tau] \longrightarrow D[0, \tau] \times D_- [0, \tau] \longrightarrow D[0, \tau] \longrightarrow D[0, \tau]$$
\[(N_n, Y_n) \longrightarrow \left(N_n, \frac{1}{Y_n}\right) \longrightarrow \tilde{\Lambda}_n \longrightarrow \hat{S}_n.\]

\(N_n\) et \(Y_n\) sont des fonctions de répartitions empiriques.

Les applications

\[\Phi : (x, y) \longrightarrow (x, u) = \left(x, \frac{1}{y}\right),\]

\[\Psi : (x, u) \longrightarrow v = \int_{[0,t]} u \, dx,\]

\[\varphi : v \longrightarrow z = \pi_{[0,1]}(1 - dv),\]

sont différentiables au sens d’Hadamard. Par ailleurs le théorème Glivenko-Cantelli donne

\[\left\|N_n - EN, Y_n - EY\right\|_\infty \longrightarrow 0 \quad \text{p.s.} \quad n \to \infty\]

La continuité en norme sup, de \(\varphi \circ \Psi \circ \Phi\) (qui est différentiable au sens d’hadamard) donne alors

\[\left\|\hat{S}_n - S\right\|_\infty \longrightarrow 0 \quad \text{p.s.} \quad n \to \infty\]

Par la composition d’application \(\varphi, \Psi\) et \(\Phi\) on peut appliquer la règle de chaîne pour \(x = EN, y = EY, u = \frac{1}{EY}, v = \Lambda, z = S\) et \((h, k) = (Z_N, Z_Y)\), nous obtenons

\[n^{\frac{1}{2}} \left(\hat{S}_n - S\right) \longrightarrow S \int_{[0,]} \frac{1}{(1 - \Delta \Lambda)} \left(-\frac{Z_Y}{(EY)^2} dEN + \frac{1}{EY} dZ_N\right)\]
\[\frac{dZ_N - Z_Y d\Lambda}{1 - \Delta\Lambda} \]

dans \((D [0, \tau], ||\cdot||_\infty)\) quand \(n \to \infty\).

Par conséquent

\[n^{\frac{1}{2}} \left(\hat{S}_n - S \right) \to SW \left(\int_{[0, \tau]} \frac{d\Lambda}{(1 - \Delta\Lambda) EY} \right), \]

où \(W\) est le processus de Wiener standard. Cet estimateur a été joliment généralisé par Var Der Laan et Mckeague (1998) au cas où l'indicateur de censure lui même n'est pas toujours observable (la cause d'une décès peut rester inconnue). Ce travail s'est aussi basé sur le fait que la fonction de survie est l'intégrale produit de la mesure de hasard.

4.4 Estimation des probabilités de transition d’un processus de Markov

Considérons un processus de Markov \(X_t, \ t \in [0, \infty[,\) prenant un nombre fini d’états dans l’ensemble \(E,\) de probabilités de transition

\[P_{ij} (s, t) = P [X_t = j / X_s = i]. \]

Il est connu que ces probabilités satisfont les équations de Chapman-Kolmogorov, ce que veut dire que si on pose
\[P(s,t) = \{ P_{ij}(s,t) , \quad i,j \in E \}, \]

on a

\[P(s,t) = P(s,u) P(u,t) \quad 0 \leq s \leq u \leq t < \infty, \quad (4.1) \]

\[P(s,s) = I \quad 0 \leq s < \infty. \quad (4.2) \]

Si \(P \) est dérivable par rapport à ses deux arguments, on a

\[Q(t) = \left(\frac{\partial P(s,t)}{\partial t} \right)_{t=s} = \left(-\frac{\partial P(s,t)}{\partial s} \right)_{s=t} \]

et

\[\frac{\partial P(s,t)}{\partial t} = P(s,t) Q(t) \]

\[\frac{\partial P(s,t)}{\partial s} = Q(s) P(s,t) \]

avec les conditions initiales \(P(s,s) = I \).

\(P \) est donc une fonction multiplicative d’intervalles et les équations précédentes ont une solution unique donnée par l’intégrale produit de la fonction additive d’intervalles

\[\alpha(s,t) = \int_{[s,t]} Q(u) \, du. \]

où \(\alpha \) est la mesure d’intensité.
Ceci montre que les probabilités de transitions sont liées à la mesure d’intensité et sont en fait déterminées par l’intégrale produite de cette mesure.

Inversement les intensités des processus peuvent être déduits en calculant l’intégrale additive de la fonction d’intervalles $P(s, t) - I$.

Par utilisation des estimateurs classiques des intensités α_{ij} (cf Aalen et Johansen 1978), on déduit des estimateurs des probabilités de transition, par passage à l’intégrale produite. Les propriétés de ce dernier estimateur se déduisent alors de ceux des intensités par utilisation des propriétés de l’intégrale porioduit. La démarche est complètement identique à celle utilisée pour l’estimateur de Kaplan-Meier.

En s’inspirant de l’estimateur de Kaplan-Meier, Laroussi et Messaci (RAMA VI 2008) ont proposé un estimateur pour des données censurées à gauche en supposant que la variable d’intérêt a une loi continue.

En se passant de cette dernière hypothèse, et en utilisant les propriétés de l’intégrale produite, nous proposons dans ce dernier paragraphe un estimateur de la fonction de répartition pour des données censurées à gauche.

4.5 Estimation de la fonction de répartition pour des données censurée à gauche

Soit $T_1, T_2, ..., T_n$ v.a. i.i.d. positives, de fonction de répartition F respectivement censurées à gauche par les v.a.C_1s à gauche, $C_2, ... C_n$ i.i.d positives de fonction de répartition G. Ceci veut dire que nous observons les couples
\[X_i = T_i \vee C_i , \delta_i = 1_{\{T_i \geq C_i\}}. \]

Nous supposons que pour tout \(1 \leq i \leq n \), \(T_i \) et \(C_i \) sont indépendantes.

Introduisons les fonctions de répartition empiriques suivantes

\[
N_n(t) = n^{-1} \sum_{i=1}^{n} 1_{\{X_i \leq t, \delta_i = 1\}}, \quad F_n(t) = n^{-1} \sum_{i=1}^{n} 1_{\{X_i \leq t\}}.
\]

Leurs espérances sont données par

\[
EN_n(t) = P(X_i \leq t, \delta_i = 1) = P(T_i \leq t, T_i \geq C_i) = \int_{[0,t]} G(s)dF(s)
\]

et

\[
EF_n(t) = P(X_i \leq t) = F(t)G(t).
\]

Remarquons que \(EN_n(t) \) et \(EF_n(t) \) ne dépendent pas de \(n \).

Pour le réel positif \(t \) tel que \(F(t)G(t) \neq 0 \), posons

\[
\Gamma(t) = \int \frac{dF(s)}{F(s)} = \int \frac{dEN_n(s)}{EF_n(s)}.
\]

Ceci suggère d’estimer \(\Gamma \) par

\[
\tilde{\Gamma}_n(t) = \int \frac{dN_n(s)}{F_n(s)}.
\]

Puisque \(F(t) = \pi (1 - d\Gamma) \), \(F \) est estimée par
\[\tilde{F}_n(t) = \pi_{[t, \infty]} \left(1 - d\Gamma_n(s) \right). \]

Afin de déduire les propriétés asymptotiques de cet estimateur, considérons les applications

\[
\begin{align*}
\varphi_1 & : (x, y) \rightarrow \left(x, \frac{1}{y} \right), \\
\varphi_2 & : (x, u) \rightarrow v = \int_{\tau}^{u} dx, \\
\varphi_3 & : v \rightarrow \pi_{[t, \infty]} (1 - dv) = z.
\end{align*}
\]

Soit \(\tau \) un réel positif tel que \(F(\tau) G(\tau) \neq 0 \). Les applications \(N_n, F_n, EF_n \) sont croissantes et bornées dans \(D[\tau, \infty] \) (ensemble des fonctions continues à droite avec limites à gauche sur \(D[\tau, \infty] \)). \(\tilde{F}_n \) s’écrit comme la composée \(\varphi_3 \circ \varphi_2 \circ \varphi_1 (N_n, F_n) \).

L’espace \(D[\tau, \infty] \) est muni de la norme sup et \(D[\tau, \infty] \times D[\tau, \infty] \) est muni de la norme sup maximum.

Par le théorème de Glivenko Cantelli, on a

\[
\|N_n - E N_n, F_n - EF_n\|_\infty \xrightarrow{n \to \infty} 0 \quad p.s.
\]

La continuité en norme sup, de \(\varphi_3 \circ \varphi_2 \circ \varphi_1 \) (qui est différentiable au sens d’hadamard) donne alors

\[
\|\tilde{F}_n - F\|_\infty \xrightarrow{n \to \infty} 0 \quad p.s.
\]
Nous allons maintenant déduire la convergence faible de \(n^{\frac{1}{2}} \left(\tilde{F}_n - F \right) \), par utilisation de la méthode delta, puisque \(n^{\frac{1}{2}} (N_n - EN_n, F_n - EF_n) \) converge en loi vers un processus gaussien centré \((Z_N, Z_F)\), de covariance identique à celle de \(n^{\frac{1}{2}} (N_n - EN_n, F_n - EF_n) \) (qui est indépendante de \(n \)).

Nous avons

\[
\begin{align*}
 d\varphi_1 (x, y) \cdot (h, k) &= (h, -\frac{k}{y^2}) = (h, j), \\
 d\varphi_2 (x, u) \cdot (h, j) &= + \int jdx + \int udh = l \\
 d\varphi_3 (v) l &= \int z \frac{z}{z} dl.
\end{align*}
\]

Par composition des applications \(\varphi_1, \varphi_2 \) et \(\varphi_3 \) on peut appliquer la règle de chaine pour \(x = EN, y = EF_n, u = \frac{1}{EF_n}, v = \Gamma \), et \((h, k) = (Z_N, Z_F)\), nous obtenons

\[
\begin{align*}
n^{\frac{1}{2}} \left(\tilde{F}_n - F \right) \overset{\mathcal{L}}{\longrightarrow} F \int_{[1, \infty]} \frac{1}{1 - \Delta \Gamma} \left(-\frac{Z_N}{(EF_n)^2} dEN_n + \frac{1}{EF_n} dZ_N \right) \\
&= F \int_{[1, \infty]} \frac{dZ_N - Z_F d\Gamma}{(1 - \Delta \Gamma) EF_n}
\end{align*}
\]

dans \((D [\tau, \infty], \| \cdot \|)\) quand \(n \longrightarrow \infty \).

Par conséquent, nous arrivons au résultat suivant

\textbf{Théorème 24}

\[
\left\| \tilde{F}_n - F \right\|_{\infty} \longrightarrow 0 \hspace{1cm} \text{p.s.}
\]

\(et \)
\(n^{1/2} \left(\tilde{F}_n - F \right) \xrightarrow{\text{d}} F \mathbb{W} \left(\int_{[0,\infty]} \frac{d\Gamma(s)}{(1 - \Delta \Gamma) F(s) G(s)} \right), \)

où \(\mathbb{W} \) est le processus de Wiener standard.

4.6 Simulation

Nous avons choisi pour loi de \(T \) la loi de poisson de paramètre \(\lambda_1 \) et pour \(C \) la loi de poisson de paramètre \(\lambda_2 \). Les résultats de la simulation pour les données censurées à gauche et les données censurées à droite sont présentés aux figures ci-dessous et les différents modèles utilisés sont précisés dans les tableaux suivants.

1-Données censurées à gauche

<table>
<thead>
<tr>
<th>modèles</th>
<th>valeurs de (\lambda_1) et (\lambda_2)</th>
<th>(n = 100)</th>
<th>(n = 500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>modèle 1</td>
<td>(\lambda_1 = 5), (\lambda_2 = 3)</td>
<td>Graphe 1.a</td>
<td>Graphe 2.a</td>
</tr>
<tr>
<td>modèle 2</td>
<td>(\lambda_1 = 6), (\lambda_2 = 8)</td>
<td>Graphe 1.b</td>
<td>Graphe 2.b</td>
</tr>
<tr>
<td>modèle 3</td>
<td>(\lambda_1 = 9), (\lambda_2 = 10)</td>
<td>Graphe 1.c</td>
<td>Graphe 2.c</td>
</tr>
</tbody>
</table>
Figure des données censurées à gauche
2-Données censurées à droite

<table>
<thead>
<tr>
<th>modèles</th>
<th>valeurs de λ_1 et λ_2</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modèle 1</td>
<td>$\lambda_1 = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_2 = 3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modèle 2</td>
<td>$\lambda_1 = 6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_2 = 8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modèle 3</td>
<td>$\lambda_1 = 9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_2 = 10$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphe 3.a Graphe 4.a
Graphe 3.b Graphe 4.b
Graphe 3.c Graphe 4.c
Figure des données censurées à droite
En conclusion la simulation des estimateurs du cas de censure à droite et du cas censure à gauche met en évidence leur bonne performance. Les graphes des estimateurs et la vraie fonction de répartition des modèles 1 et 2 sont superposables sauf au démarrage, par contre les graphes du modèle 3 et 4 démarrent parfaitement puis s’avèrent moins bons à la fin. Remarquons que dans les deux cas "censure à droite et censure à gauche" les estimateurs proposés s’améliorent avec l’augmentation de la taille de l’échantillon.
REFERENCES

RESUME

Vu l’importance de l’intégrale produit en statistique en général, et en analyse de survie en particulier, ce mémoire commence par détailler l’étude de cet outil.

Ensuite des applications de l’intégrale produit à l’estimation sont explicitées en exploitant le fait que d’une part les probabilités de transition d’une chaîne de Markov sont l’intégrale produit de la mesure d’intensité, et que d’autre part la fonction de survie est l’intégrale produit de la mesure de hasard.

MOTS CLES : Intégrale produit, différentiabilité au sens d’Hadamard, méthode Delta, estimation, données censurées.
ABSTRACT

Considering the importance of the product-integral in statistics in general and in analysis of survival in particular, our work start by detailing the study of this tool.

Then applications of the integral produces with the estimate are clarified by exploiting the fact that on the one hand the probabilities of transition from chains of markov are the integral produced of the measurement of intensity, and that on the other hand the function of survival is the integral product of the hazard measure.

KEY-WORDS: Product-integral, Hadamard differentiability, Delta method, estimation, censored data.