<table>
<thead>
<tr>
<th></th>
<th>temps</th>
<th>ind</th>
<th>étap2</th>
<th>étap3</th>
<th>étap4</th>
<th>âge</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>4.8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>73</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>74</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>76</td>
<td>9.3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>77</td>
<td>10.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>78</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>79</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>80</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>81</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>82</td>
<td>0.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>83</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>84</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>86</td>
<td>2.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>87</td>
<td>3.6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>71</td>
</tr>
<tr>
<td>88</td>
<td>3.8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>89</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>90</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>48</td>
</tr>
</tbody>
</table>

Nous avons donc le modèle suivant

$$\lambda(t) = \lambda_0(t) \exp \{ \beta_1 \times \text{étap2} + \beta_2 \times \text{étap3} + \beta_3 \times \text{étap4} + \beta_4 \times \text{âge} \}$$

ou

$$S(t) = (S_0(t))^{\exp \{ \beta_1 \times \text{étap2} + \beta_2 \times \text{étap3} + \beta_3 \times \text{étap4} + \beta_4 \times \text{âge} \}}.$$
1) L’estimation des paramètres

La fonction "Coxph" dans le logiciel S-Plus nous permet d’estimer le vecteur du paramètre \(\beta = (\beta_1, \beta_2, \beta_3, \beta_4) \) et nous obtenons les résultats suivants

\[
\begin{align*}
\text{Exp(coef)} & \quad \text{Exp(-coef)} & \quad \text{lower .95} & \quad \text{upper .95} \\
\text{etap2} & 1.15 & 0.962 & 0.452 & 2.62 \\
\text{etap3} & 1.90 & 0.526 & 0.946 & 3.82 \\
\text{etap4} & 2.11 & 0.122 & 2.100 & 12.39 \\
\text{age} & 1.02 & 0.981 & 0.991 & 1.05 \\
\end{align*}
\]

D’où

\(\hat{\beta} = (0.140, 0.642, 1.706, 0.019). \)

2) Tests d’Hypothèses.

a) Test global

\(H_0 : \beta = 0 \) contre \(H_1 : \beta \neq 0 \) et on prend le seuil \(\alpha = 0.05. \) On a les résultats suivants

\[
\begin{align*}
\text{Likelihood ratio test} & = 18.3 \text{ on 4 df, } \quad p=0.00167 \\
\text{Wald test} & = 23.2 \text{ on 4 df, } \quad p=0.000205 \\
\text{Score (logrank) test} & = 24.8 \text{ on 4 df, } \quad p=0.0000557
\end{align*}
\]

Le vecteur des coefficients de régression est

\(\hat{\beta} = (0.140, 0.642, 1.706, 0.019), \)

avec un niveau de significativité (test de rapport de vraisemblance) de 0.00107. Le vecteur des coefficients est donc significativement différent de 0. Le résultat est le même si nous utilisons le test de Wald ou le test de Score.
b) **Test local**

Nous testons, par exemple, l’hypothèse

\[H_0 : (\beta_1, \beta_2, \beta_3) = 0, \]

contre

\[H_1 : (\beta_1, \beta_2, \beta_3) \neq 0 \]

et nous prenons le seuil \(\alpha = 0.05 \).

Test de rapport de vraisemblance

\[
\chi^2_{HV} = 2 \left\{ \mathcal{L}(\hat{\beta}) - \mathcal{L}(\beta_0) \right\} = 15.682
\]

avec un niveau de significativité de 0,0013, d’où \((\beta_1, \beta_2, \beta_3) \neq 0 \). le résultat est le même si nous utilisons le test de Wald ou le test de Score.

Estimation de la fonction de covariance

\[
> \text{canc1$var}
\]

\[
[,1] [1,] 0.2131046730 0.0683665643 0.068916396 0.0008240689
[,2] 0.0683665643 0.1268209256 0.068075539 0.0005271962
[,3] 0.0689163968 0.1268209256 0.070583928 0.0005271962
[,4] 0.0008240689 0.0005271962 0.000391411 0.0002032944
\]

3) **Estimation de la fonction de survie de base \(S_0 \).**

La fonction (survfit) dans le logiciel S-Plus nous permet d’estimer la fonction de survie de base et nous avons les résultats suivants

41
La figure suivante donne la courbe de l’estimateur de la fonction de survie de base S_0
Maintenant, si nous considérons l’équation (2.2), la fonction de survie de base $S_0(t)$, et les coefficients de régression, nous pouvons estimer la fonction de survie pour un individu quelconque.

Exemple 34

Nous allons étudier un second exemple. Il s’agit de l’étude de la durée de survie de 26 patients atteints de la maladie du cancer. On a les données suivantes

<table>
<thead>
<tr>
<th>Temps</th>
<th>Ind</th>
<th>âge</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59</td>
<td>72.33</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
<td>74.49</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>156</td>
<td>66.47</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>421</td>
<td>53.36</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>431</td>
<td>50.34</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>448</td>
<td>56.42</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>464</td>
<td>56.94</td>
<td>2</td>
</tr>
<tr>
<td>Temps</td>
<td>Ind</td>
<td>âge</td>
<td>Tr</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>8</td>
<td>475</td>
<td>1</td>
<td>59.85</td>
</tr>
<tr>
<td>9</td>
<td>477</td>
<td>0</td>
<td>64.18</td>
</tr>
<tr>
<td>10</td>
<td>563</td>
<td>1</td>
<td>55.18</td>
</tr>
<tr>
<td>11</td>
<td>638</td>
<td>1</td>
<td>56.76</td>
</tr>
<tr>
<td>12</td>
<td>744</td>
<td>0</td>
<td>50.11</td>
</tr>
<tr>
<td>13</td>
<td>769</td>
<td>0</td>
<td>59.63</td>
</tr>
<tr>
<td>14</td>
<td>770</td>
<td>0</td>
<td>57.05</td>
</tr>
<tr>
<td>15</td>
<td>803</td>
<td>0</td>
<td>39.27</td>
</tr>
<tr>
<td>16</td>
<td>855</td>
<td>0</td>
<td>43.12</td>
</tr>
<tr>
<td>17</td>
<td>1040</td>
<td>0</td>
<td>38.89</td>
</tr>
<tr>
<td>18</td>
<td>1106</td>
<td>0</td>
<td>44.60</td>
</tr>
<tr>
<td>19</td>
<td>1129</td>
<td>0</td>
<td>53.91</td>
</tr>
<tr>
<td>20</td>
<td>1206</td>
<td>0</td>
<td>44.21</td>
</tr>
<tr>
<td>21</td>
<td>1227</td>
<td>0</td>
<td>59.59</td>
</tr>
<tr>
<td>22</td>
<td>268</td>
<td>1</td>
<td>74.50</td>
</tr>
<tr>
<td>23</td>
<td>329</td>
<td>1</td>
<td>43.14</td>
</tr>
<tr>
<td>24</td>
<td>353</td>
<td>1</td>
<td>63.22</td>
</tr>
<tr>
<td>25</td>
<td>365</td>
<td>1</td>
<td>64.42</td>
</tr>
<tr>
<td>26</td>
<td>377</td>
<td>0</td>
<td>58.31</td>
</tr>
</tbody>
</table>

où

1) Temps est le nombre de jours du début du traitement jusqu'à la mort ou la censure.
2) Ind est l'indicateur de censure
3) âge est l'âge au moment du diagnostic.
4) Tr est un indicateur du traitement donné au malade.

Nous avons donc le modèle suivant

\[\lambda(t) = \lambda_0(t) \exp \{ \beta_1 \times age + \beta_2 Tr \} \]
ou

\[S(t) = (S_0(t))^{\exp(\beta_1 \times \text{age} + \beta_2 \times \text{Tr})} \]

1) L'estimation des paramètres

\(\beta = (\beta_1, \beta_2) \) et nous obtenons les résultats suivants

\[
\begin{array}{l}
\text{Working data will be in C:\Program Files\sp2000\users\d}
\text{ountial_Data}
\text{> carx <- coxph(Surv(Temps, Ina) ~ age + Tr, cancer)}
\text{> summary(car)}
\text{Call:}
\text{coxph(formula = Surv(Temps, Ina) ~ age + Tr, data = cancer)}
\text{n = 26}
\text{coef exp(coef) se(coef) z p}
\text{age 0.117 1.199 0.0813 1.48 0.00114}
\text{Tr -0.804 0.448 0.6310 -1.27 0.2000}
\text{exp(coef) exp(-coef) lower .95 upper .95}
\text{age 1.159 0.863 1.06 1.27}
\text{Tr 0.448 2.234 0.13 1.54}
\end{array}
\]

D'où \(\beta = (0.147, -0.448) \)

2) Test d'hypothèses

a) Test global

\(H_0 : \beta = 0 \) contre \(H_1 : \beta \neq 0 \) et on prend le seuil \(\alpha = 0.05 \).

On a les résultats suivants

\[
\begin{align*}
\text{Likelihood ratio test } & = 15.9 \text{ on 2 df, } p=0.000355 \\
\text{Wald test } & = 15.5 \text{ on 2 df, } p=0.000129 \\
\text{Score (logrank) test } & = 15.6 \text{ on 2 df, } p=0.0000934 \\
\end{align*}
\]

Le coefficient de régression est \(\hat{\beta} = (0.147, -0.448) \), avec un niveau de significativité (test de rapport de vraisemblance) de 0.000355. Le vecteur des coefficients est donc significativement différent de 0, le résultat est le même si nous utilisons le test de Wald ou le test de Scor.

b) Test local.

Si nous nous intéressons à tester l'effet du traitement sur la fonction de hasard de base \(\lambda_0 \) nous obtenons les résultats suivants (nous utilisons par exemple le test de rapport de
$$\chi^2_{RV} = 2 \left\{ \mathcal{L}(\beta) - \mathcal{L}(\beta_0) \right\} = 1.592$$

avec un niveau de significativité de 0.207, alors on accepte H_0 donc le traitement n’a pas d’effet multiplicatif sur la durée de survie.

3) Estimation de la fonction de covariance

4) Estimation de la fonction de survie de base S_0.

La figure suivante donne la courbe de l’estimateur de la fonction de survie de base S_0.

$$\text{plot(survfit(car), xlab="survie en jours", ylab="Fonc de survie")}$$

46
Chapitre 3

Propriétés asymptotiques

Nous allons nous intéresser aux propriétés asymptotiques de l’EMVP $\hat{\beta}$ de β et $\hat{\Lambda}_0$ de Λ_0. Andersen et Gill (1982) ont montré que $\hat{\beta}$ est un estimateur consistant et asymptotiquement normal et que $\hat{\Lambda}$ est asymptotiquement normal en utilisant l’approche par les martingales.

3.1 Rappels

Notation 35

Pour chaque scalaire y soit $\|y\| = |y|$ et pour chaque matrice M soit

$$\|M\| = \max_{i,j} |M_{i,j}|.$$

Pour $Y = (y_1, ..., y_p)$ de \mathbb{R}^p,

$$|Y| = \left(\sum_{i=1}^{n} y_i^2 \right)^{\frac{1}{2}}$$

(la norme euclidienne).

Si $a = (a_1, ..., a_p)$ et $b = (b_1, ..., b_p)$ on pose...
\[[a, b] = \left\{ x = (x_1, ..., x_p) \in \mathbb{R}^p : a_i \leq x_i \leq b_i, i = 1, 2, ..., p \right\} \]

Définition 36

Soit \(\{ f_\alpha : \alpha \in A \} \) une famille de fonctions réelles sur un intervalle \([a, b]\) de \(\mathbb{R}^p\). La famille \(\{ f_\alpha \}_{\alpha \in A}\) est dite équicontinue au point \(x \in [a, b]\) si

\[\forall \varepsilon > 0, \exists \delta > 0, |x - y| < \delta \implies |f_\alpha(x) - f_\alpha(y)| < \varepsilon \]

pour tout \(\alpha \in A\). La famille est dite équicontinue sur \([a, b]\) si elle est équicontinue en chaque point \(x\) de \([a, b]\).

Théorème 37 (Application du théorème central limite de Rebolledo sur les martingales locales de carré intégrable)

Pour chaque \(n \in \mathbb{N}^*\) soit \(N^{(n)}\) un processus de comptage multivarié à \(n\) composantes. i.e.

\[\forall i \neq j, \forall t \geq 0, P \{ \Delta N_i(t) = \Delta N_j(t) = 1 \} = 0 \]

Soit \(H^{(n)}\) une matrice \(n \times p\) (\(p\) fixé) telle que chaque élément \(H_{ij}^{(n)}\) est un processus prévisible localement borné. Supposons que \(N^{(n)}\) a un processus d'intensité \(\lambda^{(n)}\). Définissons la martingale locale de carré intégrable

\[W^{(n)} = (W_1^{(n)}, ..., W_p^{(n)}) \]

par

\[W_i^{(n)}(t) = \int_0^t \sum_{l=1}^n H_{i,l}^{(n)}(x) \left\{ dN_i^{(n)}(x) - \lambda_i^{(n)}(x)dx \right\}, i = 1, 2, ..., p. \]

Soit \(A\) une matrice de dimension \(p \times p\) de fonctions continues sur \([0, \tau]\) ayant la forme de la fonction de covariance d'une martingale gaussienne \(W^{(\infty)}\) avec \(W^{(\infty)}(0) = 0\). i.e.

\[\text{Cov}(W_i^{(\infty)}(t), W_j^{(\infty)}(x)) = A_{ij}(t \wedge x) \]
pour tout i,j,l,x. Supposons que

1) $$\langle W_i^{(n)}, W_j^{(n)} \rangle(t) = \int_0^t \sum_{l=1}^n H_{i,l}^{(n)}(x) H_{j,l}^{(n)}(x) \lambda_l^{(n)}(x) dx \xrightarrow{n \to \infty} A_{i,j}(t)$$ \hspace{1cm} (C1)

2) $\forall i, 1 \leq i \leq p$ et $\forall \epsilon > 0$

$$\int_0^t \sum_{l=1}^n \left(H_{i,l}^{(n)}(x) \right)^2 \lambda_l^{(n)}(x) 1\{|H_{i,l}^{(n)}(x)| > \epsilon\} dx \xrightarrow{n \to \infty} 0.$$ \hspace{1cm} (C2)

alors

$$W^{(n)} \xrightarrow{L^p} W^{(\infty)}$$

Dans $D([0,1])^p$.

Lemme 38 (Inégalité de Langlart)

soit N un processus de comptage univarié de compensateur continu A, et soit

$$M = N - A$$

et H un processus prévisible localement borné.

alors $\forall \delta > 0, \forall \rho > 0$ et $\forall t \geq 0$ on a

1) $$P\{N(t) \geq \rho\} \leq \frac{\delta}{\rho} + P\{A(t) \geq \delta\}.$$ \hspace{1cm}

2) $$P\left\{ \sup_{0 \leq y \leq t} \left| \int_0^y H(x) dM(x) \right| \geq \rho \right\} \leq \frac{\delta}{\rho^2} + P\left\{ \int_0^t H^2(x) dA(x) \geq \delta \right\}.$$ \hspace{1cm}

Preuve.

2) Dans le corollaire (27), on prend $\eta = \delta$ et $\rho = \sqrt{\epsilon}$ et le temps d’arrêt $T = t$ on trouve le résultat (2).

1) soit (τ_n) une suite localisante telle que
\(\forall n \), \(N(\cdot \land \tau_n), A(\cdot \land \tau_n) \) et \(H(\cdot \land \tau_n) \)

soient bornées et tel que \(\forall n \), \(M(\cdot \land \tau_n) \) est une martingale locale de carré intégrable.

D’après le théorème d’arrêt optionnel pour tout temps d’arrêt fini \(T \) on a

\[
E(N(T \land \tau_n)) = E(A(T \land \tau_n))
\]

on pose

\[
X(\cdot) = N(\cdot \land \tau_n)
\]

et

\[
Y(\cdot) = A(\cdot \land \tau_n)
\]

et en appliquant le théorème (26) on trouve pour tout \(n \)

\[
P\left(\sup_{s \leq T} N(s \land \tau_n) \geq \rho \right) \leq \frac{\delta}{\rho} + P\{A(T) \geq \delta\}
\]

Or \(\tau_n \not\nearrow \infty \) p.s et \(\Pr\left(\sup_{s \in [0, T]} N(s \land \tau_n) \geq \rho \right) \) est croissant en \(n \) donc

\[
\lim_{n \to \infty} P\left(\sup_{s \leq T} N(s \land \tau_n) \geq \rho \right) = P\left(\sup_{s \in [0, T]} N(s) \geq \rho \right)
\]

d’où

\[
P\left(\sup_{s \leq T} N(s) \geq \rho \right) \leq \frac{\delta}{\rho} + P\{A(t) \geq \delta\}.
\]

En prenant \(T = t \) on trouve

\[
P\{N(t) \geq \rho\} \leq \frac{\delta}{\rho} + \Pr\{A(t) \geq \delta\}
\]

\[\blacksquare\]
3.2 consistance de $\hat{\beta}$

Nous commençons par donner des hypothèses imposées dans toute la suite de ce chapitre.

Hypothèses R

R_1: Soit τ un temps tel que

$$\int_0^\tau \lambda_0(x) dx < \infty$$

R_2: Il existe un voisinage B de β_0, un réel $s^{(0)}(\beta, t)$, un vecteur $s^{(1)}(\beta, t)$ et une matrice $s^{(2)}(\beta, t)$ définis sur $B \times [0, \tau]$ tels que : pour $j = 0, 1, 2$ on ait

$$\sup_{x \in [0, \tau], \beta \in B} \left\| S^{(j)}(\beta, x) - s^{(j)}(\beta, x) \right\|_{\mathbb{P}} \xrightarrow{n \to \infty} 0$$

R_3: Il existe $\delta > 0$ tel que

$$n^{-\delta} \sup_{x \in [0, \tau], 1 \leq i \leq n} |Z_i(x)| |Y_i(x)| 1_{\{ \beta^T Z_i(x) > -\delta Z_i(x) \} \}} \xrightarrow{n \to \infty} 0$$

R_4: Pour les fonctions $s^{(j)}$, $j = 0, 1, 2$ définies dans R_2 nous définissons :

$$e = \frac{s^{(1)}}{\sigma_0} \text{ et } v = \frac{s^{(2)}}{\sigma_0^2} - e^2$$

alors : $\forall \beta \in B$ et $\forall t \in [0, \tau]$ on a

$$s^{(1)}(\beta, t) = \frac{\partial}{\partial \beta} s^{(0)}(\beta, t)$$

et

$$s^{(2)}(\beta, t) = \frac{\partial^2}{\partial \beta^2} s^{(0)}(\beta, t).$$

R_5: Les fonctions $s^{(j)}$, $j = 0, 1, 2$ sont bornées sur $\beta \times [0, \tau]$.

Il existe $a > 0$ tel que la fonction $t \mapsto s^{(0)}(\beta, t)$ est bornée sur $\beta \times [a, \tau]$.

Pour $j = 0, 1, 2$ la famille des fonctions $s^{(j)}(\cdot, t)$, $0 \leq t \leq \tau$ est équicontinues en β_0.

R_6: La matrice
\[
\Sigma(\beta_0, \tau) = \int_0^\tau u(\beta_0, t) s^{(0)}(\beta_0, t) \lambda_0(t) dt
\]
est définie positive.

Comme nous ne connaissons pas l'expression explicite de \(\hat{\beta} \), c'est le lemme suivant donné en appendice de l'article de Andersen et Gill (1982), qui nous servira à montrer la consistance de \(\hat{\beta} \).

Lemme 39

Soit \(E \) un ensemble convexe et ouvert de \(\mathbb{R}^p \), et soit \((F_n)_{n \geq 1} \) une suite de fonctions aléatoires concaves sur \(E \) et \(f \) une fonction réelle sur \(E \) telle que

\[
\forall x \in E, F_n(x) \xrightarrow{P_{n \to \infty}} f(x)
\]

alors

1) la fonction \(f \) est concave.

2) pour tout compact \(A \) de \(E \)

\[
\sup_{x \in A} |F_n(x) - f(x)| \xrightarrow{P_{n \to \infty}} 0
\]

3) Si \(F_n \) a un seul maximum en \(X_n \) et \(f \) a un seul maximum en \(X \), alors

\[
X_n \xrightarrow{P_{n \to \infty}} X
\]

Théorème 40

Soit \(\hat{\beta} \) l'EMVP de \(\beta \) et \(\beta_0 \) la vraie valeur de \(\beta \) dans le modèle de Cox. Alors

\[
\hat{\beta} \xrightarrow{P_{n \to \infty}} \beta_0
\]
Preuve.

Soit le processus \(X_n(\beta, \cdot) \) défini par

\[
X_n(\beta, t) = n^{-1} \{ \mathcal{L}(\beta, t) - \mathcal{L}(\beta_0, t) \} = n^{-1} \left[\sum_{i=1}^{n} \int_0^t (\beta - \beta_0)' Z_i(x) dN_i(x) - \int_0^t \log \left(\frac{\sum_{i=1}^{n} Y_i(x) \exp(\beta' Z_i(x))}{\sum_{i=1}^{n} Y_i(x) \exp(\beta_0' Z_i(x))} \right) d\tilde{N}(x) \right].
\]

On pose

\[
A_n(\beta, t) = n^{-1} \left[\sum_{i=1}^{n} \int_0^t (\beta - \beta_0)' Z_i(x) \lambda_i(x) dx - \int_0^t \log \left(\frac{S^{(0)}(\beta, x)}{S^{(0)}(\beta_0, x)} \right) \tilde{\lambda}(x) dx \right],
\]

où \(\tilde{\lambda} = \sum_{i=1}^{n} \lambda_i \). Alors

\[
X_n(\beta, t) - A_n(\beta, t) = n^{-1} \left[\sum_{i=1}^{n} \int_0^t \left((\beta - \beta_0)' Z_i(x) - \log \left(\frac{S^{(0)}(\beta, t)}{S^{(0)}(\beta_0, t)} \right) \right) dM_i(x) \right] .
\]

Le processus \(X_n(\beta, \cdot) - A_n(\beta, \cdot) \) est une martingale locale de carré intégrable de processus de variation quadratique

\[
\langle X_n(\beta, \cdot) - A_n(\beta, \cdot) - X_n(\beta, \cdot) - A_n(\beta, \cdot) \rangle(t) = n^{-2} \sum_{i=1}^{n} \int_0^t \left((\beta - \beta_0)' Z_i(x) - \log \left(\frac{S^{(0)}(\beta, t)}{S^{(0)}(\beta_0, t)} \right) \right)^2 \lambda_i(x) dx
\]

\[
= n^{-1} \int_0^t \left[(\beta - \beta_0)' S^{(2)}(\beta_0, x)(\beta - \beta_0) - 2(\beta - \beta_0)' S^{(1)}(\beta_0, x) \log \left(\frac{S(\beta, x)}{S^{(0)}(\beta_0, x)} \right) \right] \lambda_0(x) dx.
\]

D’après les hypothèses \(R_1, R_2 \) et \(R_5 \) on a
\[n \{ X_n(\beta, \cdot) - A_n(\beta, \cdot), X_n(\beta, \cdot) - A_n(\beta, \cdot) \} (\tau) \]

converge en probabilité vers une limite finie et d’après le corollaire (28) on obtient :

\[X_n(\beta, \tau) - A_n(\beta, \tau) \xrightarrow{P} 0 \]

mais \(A_n(\beta, \tau) \) converge en probabilité vers \(A(\beta, \tau) \) donnée par la formule

\[A(\beta, \tau) = \int_0^\tau \left[(\beta - \beta_0)' s^{(1)}(\beta_0, x) - \log \left\{ \frac{s^{(0)}(\beta, x)}{s^{(0)}(\beta_0, x)} \right\} s^{(0)}(\beta_0, x) \right] \lambda_0(x) dx. \]

D’où \(\forall \beta \in B, X_n(\beta, \tau) \) converge en probabilité vers la même limite.

Or \(X_n(\beta, \tau) \) est une fonction concave avec un seul maximum en \(\hat{\beta} \) et \(A(\beta, \tau) \) a un seul maximum en \(\beta_0 \). Le lemme (39) donne

\[\hat{\beta} \xrightarrow{P} \beta_0 \]

\[\blacksquare \]

3.3 Normalité asymptotique

Théorème 41

* Sous les hypothèses \(R_1, \ldots, R_6 \) on a

1. Le processus

\[n^{-\frac{1}{2}} U(\beta_0, \cdot) = \left\{ n^{-\frac{1}{2}} U(\beta_0, t) : 0 \leq t \leq \tau \right\} \]

où

\[n^{-\frac{1}{2}} U(\beta_0, t) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \int_0^t \{ Z_i(x) - E(\beta_0, x) \} dN_i(x) \]

converge en loi dans \(D([0, \tau]^p) \) vers \(\mathcal{N}(0, \Sigma(\beta_0, t)) \) avec
\[\{\Sigma(\beta_0, t)\}_{t=0}^{t} = \int_{0}^{t} \nu(\beta_0, x) s(\beta_0, x) \lambda_0(x) dx. \]

2) Soit \(\hat{\beta} \) L’EMVP. Alors

\[\sup_{0 \leq \tau \leq \tau_0} \left\| \frac{1}{n} \int_{0}^{t} \sum_{i=1}^{n} V(\hat{\beta}, x) dN_i(x) - \Sigma(\beta_0, t) \right\| \xrightarrow{n \to \infty} 0 \]

Preuve.

1)

\[U(\beta_0, t) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \{Z_i(x) - E(\beta_0, x)\} dM_i(x). \]

La composante \(l \) de \(U(\beta_0, t) \) est donnée par

\[U_l(\beta_0, t) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \{Z_{il}(x) - E_l(\beta_0, t)\} dM_i(x), \]

où

\[E_l(\beta_0, t) = \frac{\sum_{i=1}^{n} Z_{il}(t) Y_i(t) \exp \{\beta_0' Z_i(t)\}}{\sum_{i=1}^{n} Y_i(t) \exp \{\beta_0' Z_i(t)\}}. \]

On pose

\[H_{il}(x) = Z_{il}(x) - E_l(\beta_0, x), \quad l = 1, 2, ..., p. \]

On obtient

\[U_l(\beta_0, t) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} H_{il}(x) dM_i(x) \]

et

\[U(\beta_0, t) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} H_l(x) dM_i(x). \]

alors les fonctions \(H_{il} \) vérifient les conditions de théorème (37).
Il reste à vérifier les conditions (C1) et (C2) du théorème (37). Soit

\[U^{(n)}(\cdot, \cdot) = n^{-\frac{1}{2}} U(\cdot, \cdot). \]

Pour vérifier la condition (C1) notons que

\[
\left\langle U^{(n)}_1(\beta_0, \cdot), U^{(n)}_1(\beta_0, \cdot) \right\rangle (t) = n^{-1} \int_0^t \sum_{i=1}^n H_{d_i}(x) H_{d_i}(x) \lambda_i(x) dx \\
= \left\{ \int_0^t V(\beta_0, x) S^{(0)}(\beta_0, x) \lambda_0(x) dx \right\}_{l^\prime}
\]

qui converge en probabilité vers

\[
\left\{ \int_0^t v(\beta_0, x) s^{(0)}(\beta_0, x) \lambda_0(x) dx \right\}_{l^\prime}
\]

d’après les hypothèses R_1, R_2 et R_5, où M_{l,l^\prime} est l’élément \((l, l^\prime)\) de la matrice M.

Vérifications maintenant la condition (C2). Posons \(H^{(n)}_i = n^{-\frac{1}{2}} H_i \) alors

\[
U^{(n)}_i(\beta_0, t) = \sum_{i=1}^n \int_0^t H^{(n)}_i(x) dM_i(x)
\]

et

\[
U^{(n)}_{l^\prime}(\beta_0, t) = \sum_{i=1}^n \int_0^t H^{(n)}_{l^\prime}(x) 1_{\left\{ |H^{(n)}_{l^\prime}(x)| \geq \epsilon \right\}} dM_i(x).
\]

D’où

\[
\left\langle U^{(n)}_{l^\prime}(\beta_0, \cdot), U^{(n)}_{l^\prime}(\beta_0, \cdot) \right\rangle (t) \\
= \sum_{i=1}^n \int_0^t \left\{ H^{(n)}_{l^\prime}(x) \right\}^2 1_{\left\{ |H^{(n)}_{l^\prime}(x)| \geq \epsilon \right\}} \lambda_i(x) dx \\
= n^{-1} \sum_{i=1}^n \int_0^t \left\{ H_{d_i}(x) \right\}^2 1_{\left\{ |H^{(n)}_{l^\prime}(x)| \geq \epsilon \right\}} Y_i(x) \exp \beta_0' Z_i(x) \lambda_0(x) dx.
\]

Utilisons l’inégalité

57
\[\forall (a, b) \in \mathbb{R}^2 : |a - b|^2 1_{|a - b| > \epsilon} \leq 4 |a|^2 1_{|a| > \frac{\epsilon}{2}} + 4 |b|^2 1_{|b| > \frac{\epsilon}{2}} \]

Nous déduisons

\[\left\langle U_{k_e}^{(n)}(\beta_{0_\epsilon}), U_{k_e}^{(n)}(\beta_{0_\epsilon}) \right\rangle (t) \]

\[\leq 4n^{-1} \sum_{i=1}^{n} \int_{0}^{T} \left| Z_{i}(x) \right|^2 1_{\left\{ n^{-\frac{1}{2}} |Z_{i}(x)| > \frac{\delta}{2} \right\}} Y_i(x) \exp \beta_{0_\epsilon} Z_{i}(x) \lambda_0(x) \, dx \]

\[+ 4n^{-1} \sum_{i=1}^{n} \int_{0}^{T} \left| E_{i}(\beta_{0_\epsilon}, x) \right|^2 1_{\left\{ n^{-\frac{1}{2}} |E_{i}(\beta_{0_\epsilon}, x)| > \frac{\delta}{2} \right\}} Y_i(x) \exp \beta_{0_\epsilon} Z_{i}(x) \lambda_0(x) \, dx. \]

Le 2ième terme dans l’équation (3.1) peut s’écrire

\[4 \int_{0}^{T} \left| E_{i}(\beta_{0_\epsilon}, x) \right|^2 1_{\left\{ n^{-\frac{1}{2}} |E_{i}(\beta_{0_\epsilon}, x)| > \frac{\delta}{2} \right\}} S^{(0)}(\beta_{0_\epsilon}, x) \lambda_0(x) \, dx. \]

Soit \(\epsilon' > 0 \) (fixé) les hypothèses \(R_2 \) et \(R_3 \) impliquent que pour \(n \) assez grand il existe un ensemble \(A_1 \) vérifiant

\[P(A_1) \geq 1 - \epsilon'. \]

Et sur \(A_1 \), on a

\[1_{\left\{ n^{-\frac{1}{2}} |E_{i}(\beta_{0_\epsilon}, x)| > \frac{\delta}{2} \right\}} = 0, \]

pour tout \(t \in [0, T] \). Donc le 2ième terme dans l’équation (3.1) converge vers 0 en probabilité.

Montrons la convergence du 1er terme

Ecrivons

\[\left\{ n^{-\frac{1}{2}} |Z_{i}(x)| > \frac{\epsilon}{2} \right\} = B_{1i}(x) \cup B_{2i}(x), \]

où

\[B_{1i}(x) = \left\{ n^{-\frac{1}{2}} |Z_{i}(x)| > \frac{\epsilon}{2}, \beta_{0_\epsilon} Z_{i}(x) > -\delta |Z_{i}(x)| \right\} \]

et

58
\[B_{21}^{(r)}(x) = \left\{ n^{-\frac{1}{2}} |Z_0(x)| > \frac{\epsilon}{2}, \beta_0^2 Z_0(x) \leq -\delta |Z_0(x)| \right\}. \]

On a
\[B_{11}^{(r)}(x) \cap B_{21}^{(r)}(x) = 0 \]

Par l’hypothèse \(R_3 \) et \(R_5 \) et pour \(\epsilon' > 0 \) et \(n \) suffisamment grand, il existe un ensemble \(A_2 \) vérifiant
\[P(A_2) \geq 1 - \epsilon' \]
tel que sur \(A_2 \) on ait
\[1_{\{B_{1i}^{(r)}(x)\}} Y_i(x) = 0 \]
pour tout \(x \in [0, r] \) et \(1 \leq i \leq n \). Alors
\[\int_0^r n^{-1} \sum_{i=1}^n |Z_0(x)|^2 1_{\{B_{1i}^{(r)}(x)\}} Y_i(x) \exp \{ \beta_0^2 Z_0(x) \} \lambda_0(x)dx \xrightarrow{P}{n \to \infty} 0. \]

Pour prouver que
\[\int_0^r n^{-1} \sum_{i=1}^n |Z_0(x)|^2 1_{\{B_{2i}^{(r)}(x)\}} Y_i(x) \exp \{ \beta_0^2 Z_0(x) \} \lambda_0(x)dx \xrightarrow{P}{n \to \infty} 0 \quad (3.2) \]
remarquons que cette intégrale est bornée par
\[\int_0^r n^{-1} \sum_{i=1}^n |Z_0(x)|^2 1_{\{Z_0(x) > \frac{\epsilon}{2} \}} \exp \{ -\delta |Z_0(x)| \} \lambda_0(x)dx. \]

Or
\[\lim_{x \to \infty} x^2 \exp (-\delta x) = 0, \text{ si } \delta > 0. \]
et pour \(\eta > 0 \) fixé et \(n \) suffisamment grand on a
\[|Z_0(x)|^2 1_{\{Z_0(x) > \frac{\epsilon}{2} \}} \exp \{ -\delta |Z_0(x)| \} < \eta \]

59
pour tout i. Donc l’intégrale dans (3.2) est bornée par

$$\eta \int_0^t \lambda_0(x)dx$$

d’où le résultat. Toutes les conditions du théorème (37) étant remplies, nous avons

$$n^{-\frac{1}{2}}U(\beta_0, t) \xrightarrow[n \to \infty]{} \mathcal{N}(0, \Sigma(\beta_0, t)).$$

2) Le processus de comptage $\tilde{N} = \sum_{i=1}^n N_i$ a pour compensateur $\sum_{i=1}^n A_i$.

Posons $\tilde{M} = \tilde{N} - \sum_{i=1}^n A_i$, le lemme (38) partie (1) entraîne

\[\forall c > 0 \text{ et } \forall \delta > 0 \]

\[P\left\{ (n^{-1}\tilde{N}(\tau) > c) \right\} \]

\[\leq \frac{\delta}{c} + P\left\{ \int_0^\tau n^{-1} \sum_{i=1}^n Y_i(x) \exp\{\beta_0 Z_i(x)\} \lambda_0(x)dx > \delta \right\} \]

\[= \frac{\delta}{c} + P\left\{ \int_0^\tau S^{(0)}(\beta_0, x) \lambda_0(x)dx > \delta \right\}. \]

Par la loi forte des grands nombres $n^{-1}\tilde{N}(\tau)$ converge p.s et

\[\lim_{n \to \infty} P\left\{ (n^{-1}\tilde{N}(\tau) > c) \right\} \]

existe $\forall c < \infty$. Par l’hypothèse R_2 on a

\[\frac{\delta}{c} + P\left\{ \int_0^\tau S^{(0)}(\beta_0, x) \lambda_0(x)dx > \delta \right\} \]

converge vers

\[\frac{\delta}{c} + P\left\{ \int_0^\tau s^{(0)}(\beta_0, x) \lambda_0(x)dx > \delta \right\}. \]

Choisissons $\delta > \int_0^\tau s^{(0)}(\beta_0, x) \lambda_0(x)dx$, nous obtenons
\[\lim_{c \to -\infty} \lim_{n \to \infty} \mathbb{P} \left \{ (n^{-1} \tilde{N}(\tau) > c) \right \} = 0. \]

(3.3)

Rappelons que

\[I(\beta, t) = -\frac{\partial}{\partial \beta} U(\beta, t) = \int_0^\tau \sum_{i=1}^n V(\beta, x) dN_i(x). \]

Donc

\[
\left\| n^{-1} I(\hat{\beta}, \tau) - \Sigma(\beta_0, \tau) \right\| \\
\leq \left\| \int_0^\tau \left\{ V(\hat{\beta}, x) - v(\hat{\beta}, x) \right\} n^{-1} d\tilde{N}(x) \right\| \\
+ \left\| \int_0^\tau \left\{ v(\hat{\beta}, x) - v(\beta_0, x) \right\} n^{-1} d\tilde{N}(x) \right\| \\
+ \left\| \int_0^\tau v(\beta_0, x) n^{-1} \left\{ \frac{d\tilde{N}(x)}{n} - \sum_{i=1}^n Y_i(x) \exp \left\{ \beta_0 Z_i(x) \right\} \lambda_0(x) dx \right\} \right\| \\
+ \left\| \int_0^\tau v(\beta_0, x) \left\{ s^{(0)}(\beta_0, x) - s^{(0)}(\beta_0, x) \right\} \lambda_0(x) dx \right\|.
\]

(3.4)

Les hypothèses \(R_2 \) et \(R_5 \) entraînent que

\[
\sup_{0 \leq x \leq \tau} \left\| V(\hat{\beta}, x) - v(\hat{\beta}, x) \right\| \xrightarrow{n \to \infty} 0.
\]

Ce résultat et la formule (3.3) montrent que le 1\(^{re} \) terme dans l’inégalité (3.4) converge en probabilité vers 0.

La formule (3.3) et la continuité uniforme de \(s^{(j)} \), \(j = 0, 1, 2 \) impliquent que le 2\(^{nde} \) terme dans l’inégalité (3.4) converge vers 0 en probabilité.

La négligeabilité asymptotique du 4\(^{rne} \) terme est directement déduite de l’application des hypothèses \(R_1 \), \(R_2 \) et \(R_5 \).

La partie (2) du lemme (38) implique que pour chaque paire \((j, k)\) on a
\[P \left\{ \left| \int_{0}^{T} \{v(\beta_0, x)\}_{jk} n^{-1} dM(x) \right| > \rho \right\} \leq \frac{\delta}{\rho^2} + P \left\{ n^{-1} \int_{0}^{T} \left[\{v(\beta_0, x)\}_{jk} \right]^2 S^{(0)}(\beta_0, t) \lambda_0(x) dx > \delta \right\} \]

Les hypothèses \(R_1, R_2 \) et \(R_5 \) impliquent

\[P \left\{ \left| \int_{0}^{T} \{v(\beta_0, x)\}_{jk} n^{-1} dM(x) \right| > \rho \right\} \xrightarrow{\mathcal{L}, n \to \infty} 0 \]

Donc le 3ème terme dans l'inégalité (3.4) converge vers 0 en probabilité.

D'où le résultat. ■

Nous sommes maintenant en mesure de montrer le théorème suivant.

Théorème 42

Soit \(\Sigma(\beta_0, t) \) la matrice définie dans \(R_6 \) alors

\[n^{\frac{1}{2}} \left(\hat{\beta} - \beta_0 \right) \xrightarrow{\mathcal{L}, n \to \infty} \mathcal{N}(0, \Sigma^{-1}(\beta_0, \tau)) \]

Preuve.

Le développement de Taylor de \(U(\beta, \tau) \) au voisinage de \(\beta_0 \) donne

\[U(\hat{\beta}, \tau) = U(\beta_0, \tau) - \mathcal{I}(\beta^*, \tau) \left(\hat{\beta} - \beta_0 \right) \]

où \(\beta^* \) est un point entre \(\hat{\beta} \) et \(\beta_0 \), \(U(\hat{\beta}, \tau) \) étant nul on a

\[n^{-1} \mathcal{I}(\beta^*, \tau) n^{\frac{1}{2}} \left(\hat{\beta} - \beta_0 \right) = n^{-\frac{1}{2}} U(\beta_0, \tau). \]

Or

\[n^{-\frac{1}{2}} U(\beta_0, t) \xrightarrow{\mathcal{L}, n \to \infty} \mathcal{N}(0, \Sigma(\beta_0, t)) \]

62
d’après le théorème (41). De plus \(\hat{\beta} \) est consistente alors

\[
\hat{\beta}^* \xrightarrow{P} \beta_0,
\]

d’où

\[
I(\hat{\beta}^*, \tau) \xrightarrow{P} n \rightarrow \infty \Sigma(\beta_0, \tau).
\]

Finalement

\[
n^{\frac{1}{2}} \left(\hat{\beta} - \beta_0 \right) \xrightarrow{L} n \rightarrow \infty \mathcal{N}(0, \Sigma^{-1}(\beta_0, \tau)).
\]

Le résultat suivant nous donne la normalité asymptotique de \(\hat{\Lambda}_0 \).

Théorème 43

Soit \(\hat{\Lambda}_0 \) l’estimateur de la fonction de hasard cumulé \(\Lambda_0 \) dans le modèle de Cox. i.e.

\[
\hat{\Lambda}_0(t) = \int_0^t \left\{ \sum_{i=1}^n Y_i(x) \exp \hat{\beta}' Z_i(x) \right\}^{-1} d\hat{N}(x).
\]

Alors

\[
n^{\frac{1}{2}} (\hat{\Lambda}_0 - \Lambda_0) \xrightarrow{L} n \rightarrow \infty \mathcal{N}(0, \Psi)
\]

où

\[
\Psi(t) = \int_0^t \lambda_0(x) s'(0, \beta_0, x) dx + \varphi'(\beta_0, t) \Sigma^{-1}(\beta_0, \tau) \varphi(\beta_0, t)
\]

et

\[
\varphi(\beta_0, t) = \int_0^t e(\beta_0, x) \lambda_0(x) dx.
\]
Preuve.

\[n^{\frac{1}{2}}(\hat{\Lambda}_0(t) - \Lambda_0(t)) \]

\[= n^{\frac{1}{2}} \int_0^t \left[\left\{ \sum_{i=1}^n Y_i(x) \exp \left\{ \beta'_0 Z_i(x) \right\} \right\}^{-1} d\tilde{N}(x) - \lambda_0(x) dx \right] \]

\[= n^{\frac{1}{2}} \int_0^t \left[\left\{ \sum_{i=1}^n Y_i(x) \exp \left\{ \beta'_0 Z_i(x) \right\} \right\}^{-1} - \left\{ \sum_{i=1}^n Y_i(x) \exp \left\{ \beta'_0 Z_i(x) \right\} \right\} \right] d\tilde{N}(x) \]

\[+ n^{\frac{1}{2}} \left[\int_0^t \left\{ \sum_{i=1}^n Y_i(x) \exp \left\{ \beta'_0 Z_i(x) \right\} \right\}^{-1} d\tilde{N}(x) - \Lambda'_0(t) \right] + n^{\frac{1}{2}} \{ \Lambda'_0(t) - \Lambda_0(t) \}, \]

où

\[\Lambda'_0(t) = \int_0^t 1\{\tilde{Y}(x) \geq 0\} \lambda_0(x) dx. \]

On va montrer que

1) Le 3ème terme est asymptotiquement négligeable,

2) le 2ème terme converge en loi vers \(\mathcal{N} \) (.,.),

3) le 1er terme converge en loi vers \(\mathcal{N} \) (.,.),

4) l’indépendance asymptotique entre le 1er et le 2ème terme.

1) La négligeabilité asymptotique de 3ème terme dans (3.5).

Par les hypothèses \(R_2 \) et \(R_5 \) on a \(n^{\frac{1}{2}} \{ \Lambda'_0(t) - \Lambda_0(t) \} \) est asymptotiquement négligeable.

2) La convergence asymptotique de 2ème terme dans (3.5)

\[n^{\frac{1}{2}} \left[\int_0^t \left\{ \sum_{i=1}^n Y_i(x) \exp \beta'_0 Z_i(x) \right\}^{-1} d\tilde{N}(x) - \Lambda'_0(x) \right] \]

\[= \int_0^t \frac{n^{\frac{1}{2}} d\tilde{M}(x)}{\sum_{i=1}^n Y_i(x) \exp \beta'_0 Z_i(x)} \]

\[= \int_0^t \frac{n^{\frac{1}{2}}}{S^{(0)}(\beta'_0, t)} d\tilde{M}(x) \]

64
a la form \(\int_0^t H(x)dM(x) \) qui converge d’après le théorème (37) vers un processus gaussien de variance

\[
\int_0^t \frac{\lambda_0(x)}{S^{(0)}(\beta_0, x)} dx.
\]

3) La convergence asymptotique de 1er terme dans (3.5).
Par le développement de Taylor au voisinage de \(\beta_0 \) de

\[
\left\{ \sum_{i=1}^{n} Y_i(t) \exp \beta' Z_i(t) \right\}^{-1}
\]

le 1er terme dans (3.5) peut être écrit

\[
\Gamma(\beta^*, t)n^{\frac{1}{2}}(\hat{\beta} - \beta_0)
\]

où \(\beta^* \) est un point entre \(\hat{\beta} \) et \(\beta_0 \) et \(\Gamma(\beta, t) \) est donnée par

\[
\Gamma(\beta, t) = -\int_0^t n^{-1} \frac{S^{(1)}(\beta, x)}{S^{(0)}(\beta, x)} \frac{d\tilde{N}(x)}{x^2}.
\]

Montrons que \(\Gamma(\beta^*, .) \) converge en probabilité vers

\[
\int_0^t S^{(1)}(\beta, x) \{S^{(0)}(\beta, x)\}^{-1} \lambda_0(x)dx.
\]

Ecrivons

\[
\Gamma(\beta_0, t) = -\int_0^t n^{-1} \frac{S^{(1)}(\beta_0, x)}{S^{(0)}(\beta_0, x)} \frac{d\tilde{N}(x)}{x^2}
\]

\[
= -\int_0^t n^{-1} \frac{S^{(1)}(\beta_0, x)}{S^{(0)}(\beta_0, x)} \frac{d\tilde{M}(x)}{x^2}
\]

\[
-\int_0^t n^{-1} \frac{S^{(1)}(\beta_0, x)}{S^{(0)}(\beta_0, x)} \sum_{i=1}^{n} Y_i(x) \exp \{\beta'_0 Z_i(x)\} \lambda_0(x)dx.
\]

le 1er terme dans (3.6) est une martingale locale de carré intégrable de processus de
variation quadratique

\[\int_0^t n^{-2} \left[\frac{S^{(1)}(\beta_0, x)}{\{ S^{(0)}(\beta_0, x) \}^2} \right]^2 \sum_{i=1}^n Y_i(x) \exp \{ \beta_0 Z_i(x) \} \lambda_0(x) dx \]

\[= \int_0^t n^{-1} \left[\frac{S^{(1)}(\beta_0, x)}{\{ S^{(0)}(\beta_0, x) \}^2} \right]^2 \{ S^{(0)}(\beta_0, x) \} \lambda_0(x) dx \]

qui converge en probabilité vers 0, \(\forall t \in [0, \tau] \).

D’après le théorème (37) le 1ère terme converge en loi vers \(\mathcal{N}(0, 0) \) donc converge en probabilité vers 0.

Le 2ème terme dans (3.6) est

\[\int_0^t \frac{S^{(1)}(\beta_0, x)}{\{ S^{(0)}(\beta_0, x) \}^2} \lambda_0(x) dx \xrightarrow{p} - \int_0^t \frac{S^{(1)}(\beta_0, x)}{\{ S^{(0)}(\beta_0, x) \}^2} \lambda_0(x) dx, \]

donc \(\Gamma(\beta_0, t) \) converge en probabilité vers

\[- \int_0^t \frac{S^{(1)}(\beta_0, x)}{\{ S^{(0)}(\beta_0, x) \}^2} \lambda_0(x) dx. \]

De plus d’après le théorème (40) on a

\[n^{1/2} \left(\hat{\beta} - \beta_0 \right) \xrightarrow{n \to \infty} \mathcal{N}(0, \Sigma^{-1}(\beta_0, \tau)). \]

Donc la fonction de covariance de 1er terme dans (3.5) est

\[\varphi'(\beta_0, t) \Sigma^{-1}(\beta_0, t) \varphi(\beta_0, t). \]

4) L’indépendance asymptotique entre le 1er terme et le 2ème terme.

Puisque \(\hat{\beta} \) est une fonction de vecteur score \(U(\beta_0, \tau) \) alors il suffit de montrer L’indépendance asymptotique entre le vecteur score et le 2ème terme.
\[
\left(U_i(\beta_0, \cdot) \right) \int_0^t \left\{ \sum_{i=1}^n Y_i(x) \exp \beta_0^T Z_i(x) \right\}^{-1} d\tilde{M}(x) \right) \left(t \right) \\
= \sum_{i=1}^n \int_0^t \left[\frac{Z_i(x) - E_i(\beta_0, x)}{\sum_{i=1}^n Y_i(x) \exp \beta_0^T Z_i(x)} \right] Y_i(x) \exp \left\{ \beta_0^T Z_i(x) \right\} \lambda_0(x) dx \\
= \int_0^t \left\{ \frac{S_i^{(1)}(\beta_0, x)}{S^{(0)}(\beta_0, x)} - E_i(\beta_0, x) \right\} \lambda_0(x) dx \\
= 0.
\]

La fonction de variance de \(\hat{\Lambda}_0 \) contient des paramètres inconnus que nous devons estimer. Dans la représentation de la fonction de variance nous remplaçons chaque terme inconnu par son estimateur empirique il vient

\[
\text{Var} \left[n^k (\hat{\Lambda}_0(t) - \Lambda_0(t)) \right] = \int_0^t \frac{d\hat{\Lambda}_0(x)}{S^{(0)}(\hat{\beta}, x)} + \Gamma'(\hat{\beta}, t) \hat{\Sigma}^{-1}(\hat{\beta}, \tau) \Gamma(\hat{\beta}, t),
\]

où

\[
\hat{\Sigma}^{-1}(\hat{\beta}, \tau) = \frac{1}{n} \int_0^t \sum_{i=1}^n V(\hat{\beta}, x) dN_i(x).
\]

\[\blacksquare\]

Théorème 44

Sous les hypothèses \(R_1, ..., R_6 \) on a

1) sous l’hypothèse \(H_0 : \beta = \beta_0 \),

\[
2 \left\{ L(\hat{\beta}, t) - L(\beta_0, t) \right\}
\]

converge à la loi vers \(\chi^2_p \).

2) Posons \(\beta = (\beta_1', \beta_2')' \) où \(\beta_1' \) (resp \(\beta_2' \)) est un vecteur de dimension \(q \times 1 \) (resp \(p-q \times 1 \)). Soit \(\hat{\beta}_2(\beta_{10}) \) l’estimateur du maximum de vraisemblance partielle de \(\beta_2 \) avec \(\beta_1 \) fixé à la
valeur β_{10}. Alors
\[
\left\{ L(\hat{\beta}) - L(\beta_{10}, \hat{\beta}_2(\beta_{10})) \right\}
\]
converge en loi vers χ^2_p.

les résultats de ce chapitre sont la base des tests donnés au chapitre 2.

3.4 Cas particulier

Les hypothèses $R_1, ..., R_6$ sont plus faciles à vérifier dans le cas des données indépendantes et identiquement distribuées (iid), où les covariables sont constantes et bornées. Dans ce cas les fonction $s^{(j)}, j = 0, 1, 2$ définies dans R_2 prennent des formes simples. Chaque $S^{(j)}, j = 0, 1, 2$ est une somme de termes indépendants et puisque les covariables sont bornés alors $S^{(j)}$ converge presque sûrement vers son espérance. Par exemple $S^{(1)}(\beta, t)$ converge p.s vers
\[
E \left\{ S^{(1)}(\beta, t) \right\} = E \left\{ Z_i Y_i(t) e^{\beta Z_i} \right\} \\
= E \left\{ Z_i e^{\beta Z_i} P \{ Y_i(t) = 1/Z_i \} \right\} \\
= E \left\{ Z_i e^{\beta Z_i} \Pi(t/Z_i) \right\}
\]

où
\[\Pi(t/Z_i) = P \{ X_i(t) \geq t/Z_i \} .\]

On peut montrer aussi que
\[S^{(0)}(\beta, t)\] converge p.s vers $E \left\{ e^{\beta Z_i} \Pi(t/Z_i) \right\}$
\[S^{(2)}(\beta, t)\] converge p.s vers $E \left\{ Z_i^{\beta^2} e^{\beta Z_i} \Pi(t/Z_i) \right\}$.

Théorème 45

Supposons que les observations (T, C, Z) et $(T_i, C_i, Z_i)_{i=1,2,...,n}$ dans le modèle de Cox sont (iid) et T_i et C_i sont indépendantes conditionnellement à Z_i. Supposons aussi que
les covariables $(Z_i)_{1 \leq i \leq n}$ sont constantes et bornées. Alors les hypothèses R_1, \ldots, R_6 sont satisfaits si

1) $P \{ Y_i(\tau) > 0 \} > 0$

et

2) la matrice $\Sigma(\beta_0, \tau)$ est définie positive.

Preuve.

Vérifions l'hypothèse R_1

\[
0 < P \{ Y_i(\tau) > 0 \} = P \{ T_i \geq \tau, C_i \geq \tau \} = E \{ P \{ T_i \geq \tau, C_i \geq \tau / Z_i \} \} \\
= E \{ P \{ T_i \geq \tau / Z_i \} P \{ C_i \geq \tau / Z_i \} \} \\
= E \left\{ [S_0(\tau)]^{n \exp(\beta'_0 Z_i)} P \{ C_i \geq \tau / Z_i \} \right\},
\]

donc

\[
P \left\{ [S_0(\tau)]^{n \exp(\beta'_0 Z_i)} > 0 \right\} > 0
\]

d'où $S_0(\tau) > 0$ et $\int_0^\tau \lambda_0(x) dx < \infty$.

Pour montrer l'hypothèse R_1 notons que $\forall t \in [0, \tau]$ et $\forall \beta \in \mathbb{R}^p$

\[
S^{(j)}(\beta, t) \xrightarrow{n \to \infty} S^{(j)}(\beta, t)
\]

par la loi forte des grands nombres. Nous devons montrer aussi qu'il existe un voisinage B de β_0 tel que

\[
\sup_{x \in [0, \tau]} \sup_{\beta \in B} \| S^{(j)}(\beta, x) - S^{(j)}(\beta, x) \| \xrightarrow{n \to \infty} 0.
\]

Nous montrons ce dernier résultat pour $S^{(6)}$ et la démonstration est la même pour $S^{(1)}$ et $S^{(2)}$.

1) Supposons que $P \{ C_i \geq t / Z_i \}$ est continue en t pour chaque valeur de Z_i alors
\[\Pi(t/Z_i) = \left[S_0(\tau) \right]^{\exp(\beta_i Z_i)} P \{ C_i \geq t/Z_i \} \]

est aussi continu en \(t \) pour chaque valeur de \(Z_i \), le théorème de convergence dominée implique que

\[s^{(0)}(\beta, t) = E \left\{ e^{\beta_i Z_i} \Pi(t/Z_i) \right\} \]

est continu en \(t \). Pour chaque \(t \in [0, \tau] \) la loi forte des grands nombres implique

\[S^{(0)}(\beta, t) \xrightarrow{P,s} s^{(0)}(\beta, t), \]

et comme \(S^{(0)}(\beta, .), n = 1, 2, \ldots \) est une suite de fonctions monotones et bornées qui converge en chaque point vers une fonction monotone et bornée \(s^{(0)}(\beta, .) \) donc la convergence est uniforme sur \(t \in [0, \tau] \).

\textbf{2) Si} \(P \{ C_i \geq t/Z_i \} \) est discontinu alors \(\Pi(t/Z_i) \) et \(s^{(0)}(\beta, t) = E \left\{ e^{\beta_i Z_i} \Pi(t/Z_i) \right\} \)

peuvent être discontinus. Or \(Z_i \) est borné donc \(s^{(0)}(\beta, t) \) est bornée, continue à gauche et non croissante sur \([0, \infty)\), donc \(s^{(0)}(\beta, .) \) a au plus un ensemble dénombrable des sauts sur \([0, \infty)\) noté \(J = \{ t_1, t_2, \ldots \} \). Soit \(Q \) l’ensemble des nombres rationnels. Une preuve identique à celle du théorème de Glivenko-Cantelli (c.f. Laha) montre que

\[S^{(0)}(\beta, t) \xrightarrow{P,s} s^{(0)}(\beta, t), \]

pour tout \(t \in [0, \tau] \cap Q \) et

\[\frac{1}{n} \sum_{i=1}^{n} e^{\beta_i Z_i} \left\{ Y_i(t^+) - Y_i(t) \right\} \xrightarrow{n \to \infty} E \left\{ e^{\beta_i Z_i} P \{ X_i > t/Z_i \} P \{ X_i \geq t/Z_i \} \right\} \]

pour tout \(t \in J \cap [0, \tau] \).

La convergence sur un ensemble dense dans \([0, \tau]\) et en tout point de discontinuité de \(s^{(0)} \) sont utilisés pour montrer que la convergence sur \([0, \tau]\) est uniforme sur le même
ensemble comme dans la preuve de théorème de Glivenko-Cantelli.

Si B est un voisinage compact de β_0, la bornitude de Z_i est les résultats ci-dessus impliquent

$$\sup_{\beta \in B, x \in [0,\tau]} \left| S^{(j)}(\beta, x) - S^{(j)}(\beta, x) \right| \overset{P, \delta}{\to} 0$$

Comme les Z_i sont bornés donc on n’a pas besoin de vérifier l’hypothèse R_3.

La bornitude de Z_i et le théorème de convergence dominée sont suffisants pour montrer l’hypothèse R_4.

Il est clair que $s^{(j)}$ est borné sur $B \times [0,\tau]$, pour voir que $s^{(0)}$ est borné au-delà de 0 sur $B \times [0,\tau]$, notons que la compacité de B et la bornitude de Z_i impliquent qu’il existe un constant k tel que $|\beta^r Z_i| \leq k$, $\forall \beta \in B$. Alors pour $t \in [0,\tau]$

$$s^{(0)}(\beta, t) = E \left\{ e^{\beta^r Z_i} P \left\{ X_i \geq t/Z_i \right\} \right\}$$

$$\leq e^k E \left\{ [S_0(\tau)]^{\beta^r Z_i} P \left\{ C_i \geq \tau / Z_i \right\} \right\}$$

$$\leq e^k [S_0(\tau)]^{-k} P \left\{ C_i \geq \tau \right\}$$

$$\leq e^k [S_0(\tau)]^{-k}.$$

Finalement nous montrons que la continuité de $s^{(0)}(\beta, t)$ en β_0 est uniforme pour $t \in [0,\tau]$ (même preuve pour $s^{(1)}(\beta, t), s^{(2)}(\beta, t)$).

Soit $\{\beta_m\}_{m \geq 1}$ telle que $\beta_m \rightarrow \beta_0$ (i.e. $\beta_m \rightarrow \beta_0$ pour tout $l = 1, 2, ..., p$). Alors

$$\sup_{0 \leq t \leq \tau} \left| s^{(0)}(\beta_m, t) - s^{(0)}(\beta_0, t) \right| \leq \sup_{0 \leq t \leq \tau} E \left\{ \left| e^{\beta^r Z_i} - e^{\beta_0 Z_i} \right| \Pi(t/Z_i) \right\}$$

$$\leq E \left\{ \left| e^{\beta^r Z_i} - e^{\beta_0 Z_i} \right| \right\} \rightarrow 0$$

par la bornitude de Z_i. ■
Théorème 46

Sous les conditions de théorème (45), soit u un temps tel que

$$\forall \tau < u, P \{ Y_s(\tau) > 0 \} > 0$$

et $\Sigma(\beta_0, \tau)$ est matrice définie positive. Alors

$$U^{(n)}(\beta_0, u) = n^{-\frac{1}{2}}U(\beta_0, u) \xrightarrow{n \to \infty} \mathcal{N}(0, \Sigma(\beta_0, u)),$$

où

$$\Sigma(\beta_0, u) = \int_0^u v(\beta_0, t)s^{(0)}(\beta_0, t)\lambda_0(t)dt.$$

Preuve.

La normalité asymptotique de $U^{(n)}(\beta_0, \tau)$ pour $\tau < u$ est évidente d’après le théorème (45). Supposons que

$$U^{(n)}(\beta_0, \tau) \xrightarrow{\mathcal{L}} U^\infty(\beta_0, \tau)$$

et soit $U^\infty(\beta_0, u)$ un processus gaussien de moyenne nulle et de matrice de covariance $\Sigma(\beta_0, u)$. Il suffit de montrer que

1) $$U^\infty(\beta_0, \tau) \xrightarrow{\tau \searrow u} U^\infty(\beta_0, u).$$

et

2) $$\lim_{\tau \searrow u} \lim_{n \to \infty} \sup_{\tau < s \leq u} \{ \sup_{\tau \leq s \leq u} \| U^{(n)}(\beta_0, s) - U^{(n)}(\beta_0, \tau) \| > \varepsilon \} = 0.$$

1) $U^\infty(\beta_0, \tau)$ et $U^\infty(\beta_0, u)$ sont deux processus gaussiens de moyenne nulle, de plus $\Sigma(\beta_0, \tau)$ converge vers $\Sigma(\beta_0, u)$ quand $\tau \searrow u$ donc
\[U^\infty(\beta_0, \tau) \overset{L_1}{\underset{\tau \to u}{\rightarrow}} U^\infty(\beta_0, u) \]

2) La preuve est très difficile et nous la donnons pour \(p = 1 \) (sans perte de généralité).

\[U^{(n)}(\beta_0, s) - U^{(n)}(\beta_0, \tau) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \int_{\tau}^{s} \{ Z_i - E(\beta_0, t) \} \, dM_i(x) \]

par le corollaire (28) on a \(\forall \varepsilon, \delta > 0 \)

\[
P \left\{ \sup_{r \leq s \leq u} n^{-\frac{1}{2}} \left| \sum_{i=1}^{n} \int_{\tau}^{s} \{ Z_i - E(\beta_0, x) \} \, dM_i(x) \right| > \varepsilon \right\} \leq \frac{\delta}{\varepsilon^2} + \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} \int_{\tau}^{u} \{ Z_i - E(\beta_0, s) \}^2 \, d\langle M_i, M_i \rangle(s) > \delta \right\} \leq \frac{\delta}{\varepsilon^2} + \frac{1}{\delta} E \left\{ \frac{1}{n} \sum_{i=1}^{n} \int_{\tau}^{u} \{ Z_i - E(\beta_0, s) \}^2 Y_i(s) \exp \{ \beta_0 Z_i \} \lambda_0(s) ds \right\} \leq \frac{\delta}{\varepsilon^2} + \frac{1}{\delta} \int_{\tau}^{u} E \left\{ \{ Z_i - E(\beta_0, s) \}^2 Y_i(s) \exp \{ \beta_0 Z_i \} \right\} \lambda_0(s) ds.
\]

Il suffit de montrer que

\[
\lim_{\tau \to u} \int_{\tau}^{u} E \left\{ \{ Z_i - E(\beta_0, s) \}^2 Y_i(s) \exp \{ \beta_0 Z_i \} \right\} \lambda_0(s) ds = 0.
\]

Or \(\forall s > 0 \) :

\[E(\beta_0, s) = \frac{\sum_{i=1}^{n} Z_i Y_i(s) \exp \beta_0 Z_i}{\sum_{i=1}^{n} Y_i(s) \exp \beta_0 Z_i} \]

est l’espérance de la covariable à risque à l’instant \(s \), comptée par rapport à la loi discrète définie par
\[h(Z_i) = \frac{Y_i(t) \exp \beta_0 Z_i}{\sum_{i=1}^{n} Y_i(t) \exp \beta_0 Z_i}. \]

Or pour chaque loi de probabilité d’un variable aléatoire \(Z \) de moyenne \(\mu \) on a

\[E(Z - \mu)^2 < EZ^2, \]

d’où

\[\sum_{i=1}^{n} \{Z_i - E(\beta_0, s)\}^2 Y_i(s) \exp \beta_0 Z_i \leq \sum_{i=1}^{n} Z_i^2 Y_i(s) \exp \beta_0 Z_i. \]

Donc

\[\sum_{i=1}^{n} \{Z_i - E(\beta_0, s)\}^2 Y_i(s) \exp \beta_0 Z_i \leq \sum_{i=1}^{n} Z_i^2 Y_i(s) \exp \beta_0 Z_i. \]

D’où

\[E \left[(Z_i - E(\beta_0, s))^2 Y_i(s) \exp \beta_0 Z_i \right] \leq E \left[Z_i^2 Y_i(s) \exp \beta_0 Z_i \right]. \]

Il suffit donc de prouver que

\[\lim_{\tau \to u} \int_{\tau}^{u} E \left[Z_i^2 Y_i(s) \exp \{\beta_0 Z_i\} \right] \lambda_0(s)ds = 0, \]

i.e. il suffit de prouver que

\[\int_{0}^{u} E \left[Z_i^2 Y_i(t) \exp \{\beta_0 Z_i\} \right] \lambda_0(s)ds < \infty. \]

Or si \(|Z_i| \leq c\), on a

\[\int_{0}^{u} E \left[Z_i^2 Y_i(s) \exp \{\beta_0 Z_i\} \right] \lambda_0(s)ds \leq c^2 E \int_{0}^{u} Y_i(s) \exp \{\beta_0 Z_i\} \lambda_0(s)ds \]

74
\[\int_0^u E \left[Z_i^2 Y_i(s) \exp \{ \beta_0 Z_i \} \right] \lambda_0(s) ds \leq c^2 \cdot N(v) \leq c^2. \]

d'où le résultat. ■
Chapitre 4

Autres modèles semi-paramétriques

4.1 Modèle de Cox stratifié

Dans cette section nous nous intéressons au modèle de régression de Cox stratifié, défini par les fonctions de hasard

\[\lambda_j(t | Z(t)) = \lambda_{j0}(t) \exp \beta_0^T Z(t), \quad j = 1, ..., s, \]

où \(\beta \) est un paramètre de régression, et les \(\lambda_{j0}, \ j = 1, ..., s \) sont des fonctions de hasard de base inconnues considérées comme des paramètres de nuisance. Ce modèle généralise le modèle semi-paramétrique de Cox usuel en permettant que différents groupes d'individus (les strates) soient gouvernés par des fonctions de hasard de base \(\lambda_{j0}, \ j = 1, ..., s \) distinctes.

L'inférence statistique dans ce modèle repose sur la méthode du maximum de vraisemblance partielle (MVP), qui fournit un estimateur consistant et asymptotiquement normal. L'estimation et les tests d'hypothèses se font comme auparavant où le log de vraisemblance partielle est donné par

\[\mathcal{L}(\beta) = \mathcal{L}_1(\beta) + \mathcal{L}_2(\beta) + ... + \mathcal{L}_s(\beta) \quad (4.1) \]
où $L_j(\beta)$ est le log de vraisemblance qui utilise seulement les données des sujet dans la $j^{\text{ième}}$ strate. Les dérivées de $L(\beta)$ donnée par la formule (4.1) sont trouvées en additionnant les dérivées à travers chaque strate.

La fonction de hasard cumulé pour la $j^{\text{ième}}$ strate peut être estimée comme décrit dans la section (2.5).

$$
\hat{\Lambda}_j(t) = \int_0^t \left\{ \sum_{i=1}^{n_j} Y_{ji}(x) \exp \beta' Z_{ji}(x) \right\}^{-1} (\sum_{i=1}^{n_j} dN_{ji}(x)), \ j = 1, \ldots, s,
$$

où Y_{ji}, N_{ji} et Z_{ji} sont les processus correspondant au $i^{\text{ième}}$ individu dans la $j^{\text{ième}}$ strate.

Une supposition clé dans l'utilisation du modèle de Cox stratifié, est que les covariables agissent de la même façon sur la fonction de hasard de base dans toutes les strates.

Exemple 47

Nous avons vu dans l'exemple (34) que le traitement n'a pas un effet multiplicatif sur le taux de hazard de base λ_0. Nous considérons donc les deux groupes de traitements comme deux strates au lieu de considérer comme des covariables. Nous obtenons les résultats suivants.

1) **Estimation des paramètres**

```r
> rar10<-coxph(Surv(Temps,Ind)~age+strata(Tr),cancer5)
> summary(rar10)

Call:
coxph(formula = Surv(Temps, Ind) ~ age + strata(Tr), data = cancer5)

n = 26

coefficients exp(SES) se(SES) p
age 0.137 1.15 0.0474 2.9 0.0038

exp(coef) exp(-coef) lower .95 upper .95
age 1.15 0.872 1.05 1.26
```

Alors

$$
\hat{\beta} = 0.137
$$
2) *Estimation des fonctions de survie de base*

\begin{verbatim}
> summary(survfit(rar10))
Call: survfit.coxph(object = rar10)

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
39 13 1 0.928 0.0289 0.9284 1
115 12 1 0.950 0.0481 0.8607 1
156 11 1 0.816 0.0758 0.7775 1
268 10 1 0.862 0.1050 0.6793 1
329 9 1 0.736 0.1525 0.4902 1
431 8 1 0.625 0.1698 0.3671 1
638 5 1 0.341 0.2225 0.0947 1

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
332 13 1 0.949 0.0283 0.9490 1
368 12 1 0.980 0.0113 0.985 1
464 9 1 0.781 0.1135 0.599 1
475 8 1 0.701 0.1318 0.485 1
563 7 1 0.602 0.1490 0.374 1

> plot(Survfit(rar10),lty=2:3)
\end{verbatim}

La courbe du haut donne l'estimation de la fonction de base dans la strate (1).
La courbe du bas donne l'estimation de la fonction de base dans la strate (2).
4.2 Le modèle de fragilité

Les modèles de fragilité sont une généralisation du modèle de Cox.
Quelle est la raison pour laquelle nous devons généraliser le modèle de Cox ? Les modèles et méthodes standards supposent que la population est homogène. Or dans certaines situations, cette hypothèse n’est pas réaliste. Les gens sont différents, par exemple, ils peuvent avoir une prédisposition génétique à certaines maladies. On peut essayer de modéliser cette hétérogénéité en l’introduisant dans le modèle, Aussi introduisons nous dans le modèle une nouvelle covariable, non observée, Z_0

$$
\lambda(t | Z, Z_0) = \lambda_0(t) \exp \{ \beta_0 Z_0 \} \exp \{ \beta' Z \} .
$$

On note

$$
\eta = \exp \{ \beta_0 Z_0 \} ,
$$

où η est une variable aléatoire réelle positive de fonction de répartition $F_\eta(\eta)$ appelée la fragilité "frailty". L’estimation est basée sur la fonction de vraisemblance non-paramétrique (cf Nielsen(1991)). Murphy (1995) a montré la consistance et la normalité asymptotique de l’estimateur de maximum de vraisemblance non-paramétrique. La fonction de survie s’écrit donc

$$
S(t | Z, \eta) = \exp \left\{ - \int_0^t \lambda_0(s) \eta \exp \{ \beta' Z \} \right\} = \exp \{ -\eta \exp \{ \beta' Z \} \Lambda_0(t) \} .
$$

Comme η n’est pas observée, la survie doit être moyennée sur η

$$
S(t | Z) = \int_0^\infty \exp \{ -\eta \exp \{ \beta' Z \} \Lambda_0(t) \} F_\eta(\eta) .
$$

Exemple 48

Soit le modèle de Cox

79
\[S(t/Z) = \exp \left\{ -\exp \{ \beta' Z \} \lambda_0(t) \right\} \]

où \(\Lambda_0 \) est le taux de hasard cumulé de base, alors

\[S(t/Z) = \exp \left\{ -\exp \{ \beta' Z \} \lambda_0(t) \right\} \]

Le choix le plus habituel pour la loi \(F_\eta \) de la fragilité est la loi gamma de densité

\[f(a, b) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-x}. \]

Alors on a

\[E(\eta) = ab \]
\[\text{var}(\eta) = ab^2. \]

On suppose en général que la moyenne de \(\eta \) est égale à 1 et on prend alors comme unique paramètre de la loi sa variance, notée \(c \) ce qui donne

\[E(\eta) = ab = 1 \]
\[\text{var}(\eta) = ab^2 = c \]
\[\eta \sim \text{g}(\frac{1}{c}, c) \]

Le paramètre \(c \), qui caractérise la variabilité de la fragilité peut être supposé connu ou inconnu. Regardons que devient la fonction de survie dans ce cas.

\[S(t/Z) = \int_0^{\infty} e^{-\eta \lambda_0(t)} f_\eta(\eta) d\eta \]
\[= \int_0^{\infty} e^{-\eta \lambda_0(t)} \frac{1}{c^a \Gamma(a)} \eta^{a-1} e^{-\frac{x}{c}} d\eta \]

80
\[
S(t/Z) = \frac{1}{c^\frac{1}{c} \Gamma\left(\frac{1}{c}\right)} \int_0^\infty \eta^{\frac{1}{c}-1} e^{-\left\{\frac{1}{c} + e^{(\eta')\Lambda_0(t)}\right\} \eta} d\eta
\]
\[
= \frac{1}{c^\frac{1}{c} \Gamma\left(\frac{1}{c}\right)} \Gamma\left(\frac{1}{c}\right) \left(\frac{1}{c} + e^{(\eta')\Lambda_0(t)}\right)^{-1}
\]
\[
= \frac{1}{c^\frac{1}{c}} \left(\frac{1}{c} + e^{(\eta')\Lambda_0(t)}\right)^{-\frac{1}{c}}
\]
\[
= \left(1 + ce^{(\eta')\Lambda_0(t)}\right)^{-\frac{1}{c}}
\]
\[
e^{-\frac{1}{c} \log\left(1 + ce^{(\eta')\Lambda_0(t)}\right)}
\]
\[
e^{-G\left(e^{(\eta')\Lambda_0(t)}\right)}
\]

On voit donc par ce calcul qu’un modèle de fragilité gamma généralise le modèle de Cox de la manière suivante. Pour la fragilité gamma on a le modèle

\[
S(t/Z) = e^{-G\left(e^{(\eta')\Lambda_0(t)}\right)}
\]

où

\[
G(u) = \log \left(\left(1 + cu\right)^{\frac{1}{c}}\right)
\]

alors que pour le modèle de Cox G est simplement l’identité G(u) = u.

4.3 Le modèle de fragilité corrélé

Ce modèle est une généralisation du modèle de fragilité. Le taux de hasard sous le modèle de fragilité corrélé d’un individu i est donné par

81
\[\lambda (t \mid Z_i, Q^t) = \lambda_0(t)Q^t \exp \{ \beta'Z_i(t) \}, \]

où

\[Z_i(t) = (Z_{i1}(t), Z_{i2}(t), ..., Z_{ip}(t))' \]

est le vecteur de covariables, \(Q^t = Q_0 + Q_i \) tel que

\[Q_0, Q_1, Q_2, ..., Q_n \]

sont des variables aléatoires indépendantes de loi gamma de paramètres

\((v, \eta), (v^*, \eta), (v^*, \eta), ..., (v^*, \eta) \) respectivement, \(\beta = (\beta_1, \beta_2, ..., \beta_p) \) est le vecteur de paramètre et \(\lambda_0(.) \) est une fonction de hasard de base. Dans ce cas \(Q^t \) est une variable aléatoire de loi gamma de paramètre \((v - v^*, \eta) \).

4.4 Modèle de Cox avec covariable manquante

Ce modèle a été introduit par Dupuy et autres (cf Dupuy (2006)). Le modèle de Cox définit la loi d’un instant d’événement \(T \) conditionnelle à une variable explicative (covariable) dépendant du temps \((Z(t)), t \geq 0 \) par la fonction de hasard

\[\lambda (t \mid Z(t)) = \lambda_0(t) \exp \beta'Z(t) \]

où \(\beta \) est un paramètre de régression et \(\lambda_0 \) une fonction de hasard de base considérée comme un paramètre de nuisance. Cox a proposé d’estimer \(\beta \) au vu d’un échantillon de données censurées

\[X = (X_i, \delta_i, \{Z_i(s), 0 \leq s \leq X_i\})_{1 \leq i \leq n} \]

où \(X_i = T_i \wedge C_i, T_i \) est le temps de survie du \(i^{\text{ème}} \) malade et \(C_i \) est le temps de de censure du \(i^{\text{ème}} \) malade, \(\delta_i = 1_{\{T_i > C_i\}} \) est l’indicateur de censure. Si les valeurs
\{ Z_i(X_i), i = 1, 2, ... n \}

aux instants d'événement ne sont pas observées, nous modélisons conjointement \((X, \delta)\) et \(Z(.)\) pour en déduire une vraisemblance permettant d’estimer \(\beta\) et \(\Lambda_0\) au vu des données incomplètes.

4.4.1 Construction de la vraisemblance conjointe

Etudions le cas où \(Z\) est un scalaire.

1. Supposons que l’on observe une covariable \(Z(.)\) dans l’intervalle de temps \([0, \tau]\). Supposons que \(Z(.)\) soit une fonction en escalier de valeur constante \(Z(t) = Z_j\) sur les intervalles \((t_{j-1}, t_j]\), où \(t_j\) est l’instant d’observation de \(Z_j\), \((j = 1, ..., K, t_0 = 0, t_K = \tau)\). \(Z_0\) est une valeur initiale mesurée en \(t_0\). La valeur \(Z_j\) n’est pas mesurée si \(X \leq t_j\). Soit

\[
a_t = \max \{ k : t_k < t \}, (t > 0)
\]

l’indice de la dernière observation de \(Z(.)\) avant \(t\). Le problème est le suivant. Soit \((X_i, \delta_i, Z_i(.))_{1 \leq i \leq n}, (X, \delta, Z(.))\), \((n + 1)\) triplets iid. Pour tout \(i\) les observations portent sur vecteur aléatoire

\[
Y_i = \left\{ X_i, \delta_i, Z_i;0, ..., Z_i;\alpha X_i \right\}.
\]

L’observation de \(Z_i(.)\) à l’instant \(X_i\) est manquante et la loi de \(X_i\) en dépend. On dit que \(Z_i(X_i)\) est une valeur manquante.

Le problème statistique est d’estimer \(\beta\) et le taux de hasard cumulé \(\Lambda_0\) au vu des observations incomplètes fournies par \((Y_i)_{1 \leq i \leq n}\).

2. Supposons que pour chaque \(j \geq 1\), le vecteur aléatoire \((Z_0, ..., Z_j)\) à valeurs dans \(\mathbb{R}^{j+1}\) admette une densité \(f (Z_0, ..., Z_j, \alpha)\) sur \(\mathbb{R}^{j+1}\), paramétrée par \(\alpha \in \mathbb{R}^{p} (p \geq 1)\). Construisons un modèle conjoint pour \((X, \delta, Z(.))\) à partir du modèle de Cox. Ce modèle conjoint est paramétré par \(\theta = (\beta, \Lambda_0, \alpha)\), où \(\beta\) et \(\Lambda_0\) sont les paramètres d’intérêt du modèle.
Nous obtenons la vraisemblance de θ au vu d’une observation incomplète Y en intégrant la densité du vecteur complet $(Y, Z(X))$ sur la valeur inobservée $Z(X)$.

Nous supposons que la distribution de C ne dépend pas de θ (censure non informative), que T et C sont indépendants conditionnellement à $Z(.)$ et que C ne dépend pas des valeurs inobservées de $Z(.)$. On obtient la vraisemblance

$$
\int \{\lambda(x)\}^t \exp \left[\delta \beta Z(X) - \int_0^x \lambda(x) \exp \{\beta Z(x)\} \, dx \right] \times f(Z_0, ..., Z_{ax}, Z(X), \alpha) \, dZ(X)
$$

3. Au contraire de la vraisemblance partielle, la vraisemblance (notée L_n par la suite) dépend du paramètre Λ_0. Pour trouver un maximum de cette vraisemblance, l’espace des fonctions $\Lambda_0(.)$ est restreint à l’ensemble des fonctions en escalier $\Lambda_{0,n}(.)$ positives, croissantes sur $[0, \infty)$, et dont les sauts $\Delta \Lambda_{0,n}(X_k)$ se produisent aux $p(n)$ ($p(n) \leq n$) instants d’événements non censurés $X_k (k = 1, ..., p(n))$.

L’estimateur de θ obtenu sera dit estimateur semiparamétrique. Notons

$\hat{\theta}_n = (\hat{\beta}_n, \hat{\Lambda}_n(\cdot), \hat{\alpha}_n)$ l’estimateur de θ obtenu en maximisant sur l’espace des paramètres modifié

$$
\left\{ (\beta, \Delta \Lambda_{0,n}(X_1), ..., \Delta \Lambda_{0,n}(X_{p(n)}), \alpha) : \beta \in \mathbb{R}, \Delta \Lambda_{0,n}(X_k) \in \mathbb{R}, \quad k = 1, 2, ..., p(n), \alpha \in \mathbb{R}^p \right\}
$$

la vraisemblance :

$$
L_n(\theta) = \prod_{i=1}^n \int \Delta \Lambda_{0,n_i}(X_i) \exp \left[\delta_i \beta Z(X) - \sum_{k=1}^{p(n)} \Delta \Lambda_{0,n}(X_k) \exp \{\beta Z_i(X_k)\} \right] \times 1_{(X_i \leq X_i)} f(Z_0, ..., Z_{ax}, Z(X); \alpha) \, dZ(X)
$$

L’estimateur $\hat{\theta}_n$ obtenu en maximisant $L_n(\theta)$ est appelé estimateur de maximum de vraisemblance non paramétrique (L’EMVNP).

4. Pour maximiser le logarithme de $L_n(\theta)$ nous utilisons l’algorithme itératif EM. Notons que pour estimer les paramètres d’intérêt β et Λ_0, il est nécessaire d’estimer α qui inter-
vient dans le calcul des espérances conditionnelles \(E_\theta \). Notons que si \(X_1 \) et \(X_2 \) sont deux variables aléatoires, nous notons \(E_\theta [X_1/X_2] \) l’espérance conditionnelle de \(X_1 \) sachant \(X_2 \), paramétrée par \(\theta \).

La proposition suivante fournit une caractérisation de \(\hat{\theta}_n \) (L’EMVNP).

Sous certaines conditions (cf dupuy 2006) on a

Proposition 49

(L’EMVNP) \(\hat{\theta}_n \) satisfait l’équation suivante,

\[
\hat{\Lambda}_n(t) = \int_0^t \frac{dH_n(x)}{W_n(u, \hat{\theta}_n)}
\]

où

\[
H_n(x) = n^{-1} \sum_{i=1}^n \Delta_i 1_{\{X_i \leq x\}}
\]

et

\[
W_n(u, \theta) = n^{-1} \sum_{i=1}^n E_\theta \left[e^{\theta Z(x)} 1_{\{x \leq Y_i\}} \right]
\]

4.4.2 Propriétés asymptotiques des L’EMVNP

Théorème 50

L’ENPMV \(\hat{\theta}_n = (\hat{\beta}_n, \hat{\Lambda}_n, \hat{\alpha}_n) \) est consistant, i.e.

\[
\| \hat{\alpha}_n - \alpha \|_{\text{p.s.}} \rightarrow_\infty 0 \\
\| \hat{\beta}_n - \beta \|_{\text{p.s.}} \rightarrow_\infty 0 \\
\| \hat{\Lambda}_n - \Lambda_0 \|_{\infty} \rightarrow_\infty 0
\]

où \(\| . \| \) est la norme euclidienne et \(\| . \|_{\infty} \) est la norme sup sur \([0, \tau] \).

Soit \(VB[0, \tau] \) l’espace des applications à variation bornée de \([0, \tau] \) dans \(\mathbb{R} \), et

\[
H = \{ h = (h_1, h_2, h_3) : h_1 \in \mathbb{R}^p, h_2 \in \mathbb{R}, h_3 \in VB[0, \tau] \}.
\]

85
Nous définissons sur H la norme suivante, si $h \in H$,

$$
\|h\|_H = \|h_1\| + |h_2| + \|h_3\|_{v}
$$

où $\|h_3\|_{v}$, est la valeur absolue de $h_3(0)$ plus le total de variation de h_3 sur l'intervalle $[0, \tau]$. Soit

$$
H_p = \{ h \in H, \|h\|_H \leq p \},
$$

et

$$
H_\infty = \{ h \in H, \|h\|_H < \infty \}
$$

et $VB_p[0, \tau]$ l'espace des fonctions réelles sur $[0, \tau]$ bornées par p et de variation bornée par p. Soit

$$
\theta(h) = (\beta, \Lambda_0, \alpha) = h'_1 \alpha + h_2 \beta + \int_0^\tau h_0(u)d\Lambda_0(u).
$$

Alors on peut considérer θ comme une fonctionnelle sur H_p et l'espace des paramètre Θ est un sous ensemble de $l^\infty(H_p)$ l'espace des fonctions réelles bornées sur H_p.

Théorème 51

La suite $\left(\sqrt{n} \left(\hat{\beta}_n - \beta_0 \right) , \sqrt{n} \left(\hat{\Lambda}_0 - \Lambda_0 \right) \right)$ converge en loi dans $l^\infty(H_p)$ vers un processus gaussien centré G, de fonction de covariance

$$
Cov(G(g), G(g^*)) = \int_0^\tau g_2(u)\sigma_{\beta_0}^{-1}(g^*)(u)d\Lambda_0(u) + \varphi_{\Lambda_0}(g^*)g_2 + \sigma_{\Lambda_0}^{-1}(g^*)g_1(u)
$$

où

$$
\sigma_{\beta_0}^{-1} = (\sigma_{\beta_0}^{-1}, \sigma_{\beta_0}^{-1}, \sigma_{\beta_0}^{-1})
$$

est l'inverse de l'opérateur continu

$$
\sigma_{\beta_0} = (\sigma_{\beta_0}, \sigma_{\beta_0}, \sigma_{\beta_0})
$$

86
de H_∞ dans H_∞ défini par :

$$
\begin{align*}
\sigma_{1,\theta_0}(h) &= E_{\theta_0} \left[\frac{\partial^2}{\partial \alpha \partial \alpha'} \ln f(Z_0, \ldots, Z_{\alpha X}, Z, \alpha_0) h_1 \right] \\
\sigma_{2,\theta_0}(h) &= E_{\theta_0} \left[\int_0^X Z(u) e^{\theta_0 Z(u)} (Z(u) h_2 + h_3(u)) d\Lambda_0(u) \right] \\
\sigma_{3,\theta_0}(h)(u) &= E_{\theta_0} \left[(Z(u) h_2 + h_3(u)) e^{\theta_0 Z(u)} 1_{\{u \leq X\}} \right].
\end{align*}
$$

\section{4.5 Modèle additif}

Dans le modèle de Cox nous avons supposé que les covariables ont un effet multiplicatif sur le taux de hasard de base λ_0. Dans cette section nous présentons un modèle alternatif en supposant que les covariables agissent d'une manière additive sur le taux de hasard de base inconnue. Ce modèle proposé par Odd Aalen (1989) est connu sous le nom du modèle de hasard additif. Les coefficients de risque inconnus dans ce modèle peuvent dépendre du temps.

\subsection{4.5.1 Définition de modèle}

Soit $(X_i, \delta_i, Z_i)_{1 \leq i \leq n}$, où $X_i = T_i \wedge C_i$ (C_i est la variable aléatoire de censure et T_i est la variable d'intérêt) et δ_i est l'indicateur de censure $\delta_i = 1_{\{T_i \leq C_i\}}$.

$$
Z_i(t) = (Z_{i1}(t), Z_{i2}(t), \ldots, Z_{ip}(t))^t
$$

est le vecteur de covariables dont dépend la durée de survie T_i. Le taux de hasard d'un sujet qui à pour vecteur de covariables $Z_i(t)$, sous le modèle additif, est

$$
\lambda(t|Z_i(t)) = \beta_0(t) + \sum_{j=1}^p \beta_j(t) Z_{ij}(t)
$$

(4.2)

où β_0 est la fonction de taux de hasard de base et les β_j, $1 \leq j \leq p$ sont les fonctions de risque inconnues. L'estimation directe des fonctions β_j, $1 \leq j \leq p$ étant très difficile.
nous estimons les fonctions de risque cumulé B_j, $1 \leq j \leq p$ définies par

$$B_j(t) = \int_0^t \beta_j(x)dx, \quad 1 \leq j \leq p.$$

4.5.2 Estimation de B_j, $0 \leq j \leq p$

Nous définissons les processus de comptage

$$N_i(t) = 1_{\{X_i \leq t, \delta_i = 1\}},$$

et

$$Y_i(t) = 1_{\{X_i > t\}}.$$

le processus de présence du $i^{\text{ème}}$ sujet juste avant l'instant t et le processus

$$N(t) = (N_1(t), N_2(t), \ldots, N_n(t))^'.$$

Soit Y la matrice de dimension $n \times (p + 1)$, où la $j^{\text{ème}}$ ligne de cette matrice est donnée par

$$[Y_j(t), Y_j(t) Z_{j1}(t), Y_j(t) Z_{j2}(t), \ldots, Y_j(t) Z_{jp}(t)].$$

Le processus d’intensité du processus $N_j(t)$ sous le modèle additif est :

$$\lambda_j(t) = [(Y_j(t), Y_j(t) Z_{j1}(t), Y_j(t) Z_{j2}(t), \ldots, Y_j(t) Z_{jp}(t))] \beta(t)$$ (4.3)

où

$$\beta(t) = (\beta_0(t), \beta(t)_1, \ldots, \beta_p(t))^'.$$

donc

$$M(t) = N(t) - \int_0^t Y(x)\beta(x)dx$$

88
est une martingale de dimensions \(n \times 1 \). D'où

\[
dN(t) = dM(t) + \mathbb{Y}(t)\beta(t)dt
\]

(4.4)

On peut supposer que la martingale \(M \) est un bruit et on pose \(dM(t) = 0 \) dans (4.4) on trouve

\[
\mathbb{Y}(t)\beta(t)dt = dN(t)
\]

(4.5)

et nous résolvons (4.5) pour obtenir un estimator de \(B(t) = \int_0^t \beta(x)dx \). La solution existe si la matrice \(\mathbb{Y}(t) \) est de rang maximal, dans ce cas soit \(\mathbb{Y}^-(t) \) la matrice inverse généralisée de \(\mathbb{Y}(t) \) (i.e. \(\mathbb{Y}^-(t) \mathbb{Y}(t) = I_{(p+1)(p+1)} \) matrice unité), l'estimateur de \(B(t) \) est

\[
\hat{B}(t) = \int_0^t \mathbb{Y}^-(x)dN(x)
\]

\[
\hat{B}(t) = \sum_{\tau_j \leq t} \delta_j \mathbb{Y}^-(T_j)(\Delta N_1(T_j), ..., \Delta N_1(T_j))', \text{ pour } t \leq \tau
\]

où \(\tau = \max \{ T_j : \mathbb{Y}'(T_j)\mathbb{Y}(T_j) \} \) est une matrice nonsingulière et la matrice \(\mathbb{Y}^-(t) \) donnée par

\[
\mathbb{Y}^-(t) = [\mathbb{Y}'(t)\mathbb{Y}(t)]^{-1} \mathbb{Y}'(t).
\]

On pose \(A(t) = \mathbb{Y}'(t)\mathbb{Y}(t) \) d'élément \((g, k) \) donné par

\[
a_{g,k}(t) = \sum_{j=1}^n Y_j(t)Z_{j(g-1)}(t)Z_{j(k-1)}(t), \quad g, k = 1, ..., p + 1
\]

(4.6)

où \(Z_j(t) = 1 \). Pour \(t \leq \tau \) soit \(R(t) = A^{-1}(t) \) et \(R_{g,k}(t) \) l'élément \((g, k) \) de la matrice \(R(t) \). Alors l'estimateur de \(B_g(t) \) est

\[
\hat{B}_g(t) = \sum_{\tau_j \leq t} \delta_j \sum_{k=1}^{p+1} R_{g+1,k}(T_j)Y_j(T_j)Z_{j(k-1)}(T_j), \quad 0 \leq g \leq p, \quad t \leq \tau
\]

(4.7)
Exemple 52

Supposons qu’on a un échantillon construit à partir de deux groupes \((G_1 \text{ et } G_2)\). Et supposons que les \(z_j\) sont des scalaires tels que \(z_j = 1\) si le malade dans le groupe 1 et \(z_j = 0\) si non. Alors la matrice \(A(t)\) est donnée par

\[
A(t) = \begin{bmatrix}
\bar{Y}(t) & \bar{Y}_1(t) \\
\bar{Y}_1(t) & \bar{Y}_2(t)
\end{bmatrix},
\]

où \(\bar{Y}(t)\) est le nombre des individus à risque à l’instant \(t\) et \(\bar{Y}_1(t)\) est le nombre des individus du 1er groupe \((G_1)\) à risque à l’instant \(t\). D’où

\[
R(t) = \begin{bmatrix}
\frac{1}{\bar{Y}_1(t)} & \frac{1}{\bar{Y}_2(t)} \\
\frac{1}{\bar{Y}_1(t)} & \frac{1}{\bar{Y}_1(t)} + \frac{1}{\bar{Y}_2(t)}
\end{bmatrix}.
\]

D’après la formule (4.7) on a

\[
\hat{B}_0(t) = \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_2(T_j)} - \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_1(T_j)}
= \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_2(T_j)},
\]

et

\[
\hat{B}_1(t) = -\sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_2(T_j)} + \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_1(T_j)} \left[\frac{1}{\bar{Y}_1(t)} + \frac{1}{\bar{Y}_2(t)} \right]
= \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_1(T_j)} - \sum_{T_j \leq t} \frac{\delta_j}{\bar{Y}_2(T_j)}.
\]

Remarque 53

Huffer et Mckeague (1991) proposent d’utiliser la matrice inverse généralisée des
moindres carrés donnée par

$$\Psi^-(t) = [\Psi'(t)W(t)\Psi(t)]^{-1}\Psi'(t)W(t)$$

où $W(t)$ est une matrice diagonale de dimensions $n \times n$ avec l’élément (j, j) proportionnel avec l’inverse de la variance de $dM_j(t)$.

4.6 Le modèle de Cox-Aalen

Ce modèle est proposé par Scheike et Zhang en 2002. Le processus d’intensité sous le modèle de Cox-Aalen est donné par

$$\lambda_i(t) = Y_i(t)Q_i(t)\alpha(t) \exp \{\beta'Z_i(t)\},$$

où

$$Q_i(t) = (Q_{i1}(t), Q_{i2}(t), ..., Q_{ip}(t))',$$

et

$$Z_i(t) = (Z_{i1}(t), Z_{i2}(t), ..., Z_{iq}(t))',$$

sont deux vecteurs de covariables et

$$\alpha(t) = (\alpha_1(t), ..., \alpha_p(t))',$$

est le vecteur de fonctions de risque qu’on doit estimer. C’est-à-dire que quelques covariables ont un effet additif et les autres ont un effet multiplicatif.

Si β est connu nous utilisons l’estimateur de Huffer et McKeague (1991) de fonction de risque cumulé $B(t) = \int_0^t \alpha(x)dx$ en résolvant l’équation

$$\Psi'(t, \beta)W(t) \{dN(t) - \Psi'(t, \beta)d\Lambda(t)\} = 0,$$

91
où $N(t)$ est un processus de comptage multivarié et $\mathcal{Y}(t, \beta)$ est donné par

$$\mathcal{Y}(t, \beta) = (Y_1(t) \exp \{\beta'Z_1(t)\} Q_1(t), ..., Y_n(t) \exp \{\beta'Z_n(t)\} Q_n(t))',$$

et $\mathcal{Y}^-(t, \beta)$ est la matrice inverse généralisée de $\mathcal{Y}(t, \beta)$ tel que

$$\mathcal{Y}^-(t, \beta) = [\mathcal{Y}'(t, \beta)W(t)\mathcal{Y}(t, \beta)]^{-1}\mathcal{Y}'(t, \beta)W(t),$$

où

$$W(t) = \text{diag} \{w_1(t, \beta), ..., w_n(t, \beta)\},$$

est une matrice diagonale telle que

$$w_i(t, \beta) = \frac{Y_i(t) \exp \{-\beta'Z_i(t)\}}{h_i(t)},$$

où $h_i(t)$ est une fonction connue ne dépendant pas de β, un choix simple de la fonction $h_i(t)$ est $h_i(t) = 1$ pour tout i. L’estimateur de B est donné par

$$\widehat{B}(t, \beta) = \int_0^t \mathcal{Y}^-(s, \beta) dN(s).$$

Nous résolvons l’équation

$$U(\beta) = \int_0^t [Z'(s) - Z'(s)\mathcal{Y}(s, \beta)\mathcal{Y}^-(s, \beta)] dN(s) = 0,$$

pour obtenir un estimateur $\hat{\beta}$ de β. Où

$$Z = (Z_1, Z_2, ..., Z_n)'.$
Bibliographie

94